早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=12BC,证明

题目详情
如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.

(1)证明:四边形EGFH是平行四边形;
(2)在(1)的条件下,若EF⊥BC,且EF=
1
2
BC,证明:平行四边形EGFH是正方形.
▼优质解答
答案和解析
证明:(1)∵G,F分别是BE,BC的中点,
∴GF∥EC且GF=
1
2
EC.
又∵H是EC的中点,EH=
1
2
EC,
∴GF∥EH且GF=EH.
∴四边形EGFH是平行四边形.
(2)连接GH,EF.
∵G,H分别是BE,EC的中点,
∴GH∥BC且GH=
1
2
BC.
又∵EF⊥BC且EF=
1
2
BC,
又∵EF⊥BC,GH是三角形EBC的中位线,
∴GH∥BC,
∴EF⊥GH,
又∵EF=GH.
∴平行四边形EGFH是正方形.