早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知点O为正方形ABCD的中心,M为射线OD上一动点(M与点O,D不重合),以线段AM为一边作正方形AMEF,连接FD.(1)当点M在线段OD上时(如图1),线段BM与DF有怎样的数量及位置关系?请

题目详情
已知点O为正方形ABCD的中心,M为射线OD上一动点(M与点O,D不重 合),以线段AM为一边作正方形AMEF,连接FD.
(1)当点M在线段OD上时(如图1),线段BM与DF有怎样的数量及位置关系?请判断并直接写出结果;
(2)当点M在线段OD的延长线上时(如图2),(1)中的结论是否仍然成立?请结合图2说明理由.
▼优质解答
答案和解析
(1)BM=DF,BM⊥DF
理由是:∵四边形ABCD、AMEF是正方形,
∴AF=AM,AD=AB,∠FAM=∠DAB=90°,
∴∠FAM-∠DAM=∠DAB-∠DAM,
即∠FAD=∠MAB,
∵在△FAD和△MAB中
AF=AM
∠FAD=∠MAB
AD=AB

∴△FAD≌△MAB,
∴BM=DF,∠FDA=∠ABD=45°,
∵∠ADB=45°,
∴∠FDB=45°+45°=90°,
∴BM⊥DF,
即BM=DF,BM⊥DF.

(2)成立,
理由是:∵四边形ABCD和AMEF均为正方形,
∴AB=AD,AM=AF,∠BAD=∠MAF=90°,
∴∠FAM+∠DAM=∠DAB+∠DAM,
即∠FAD=∠MAB,
∵在△FAD和△MAB中
AF=AM
∠FAD=∠MAB
AD=AB

∴△FAD≌△MAB,
∴BM=DF,∠ABM=∠ADF,
由正方形ABCD知,∠ABM=∠ADB=45°,
∴∠BDF=∠ADB+∠ADF=90°,
即BM⊥DF,
∴(1)中的结论仍成立.