早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,AB为⊙O的直径,D是⊙O上一点,过D点作直线EF,BH⊥EF交⊙O于点C,垂足为H,且BD平分∠ABH.(1)求证:EF是⊙O的切线;(2)若AB=4,BH=3,求①BD;②求由弦BD和BD所组成的阴影部分的面

题目详情
如图,AB为⊙O的直径,D是⊙O 上一点,过D点作直线EF,BH⊥EF交⊙O于点C,垂足为H,且BD平分∠ABH.
(1)求证:EF是⊙O的切线;
(2)若AB=4,BH=3,求①BD;②求由弦BD和
BD
所组成的阴影部分的面积.
▼优质解答
答案和解析
(1)证明:连接DO,
∵BD平分∠ABH,
∴∠HBD=∠DBA,
∵BO=DO,
∴∠OBD=∠ODB,
∴∠ODB=∠HDB,
∴DO∥HB,
∵BH⊥EF,
∴∠ODH=90°,
∴EF是⊙O的切线;

(2)①连接AD,
∵AB为⊙O的直径,
∴∠ADB=90°,
∴∠BHD=∠ADB,
∵∠HBD=∠DBA,
∴△BDH∽BAD,
BD
AB
=
BH
BD

∴BD2=4×3=12,
∴BD=2
3


②过点O作ON⊥BD于点N,
∵BD=2
3
,AB=4,
∴cos∠DBA=
BD
AB
=
2
3
4
=
3
2

∴∠DBA=30°,
∴ON=
1
2
BO=
1
2
×2=1,∠BON=60°,
∴∠BOD=120°,
∴弦BD和
BD
所组成的阴影部分的面积为:S扇形BOD-S△BOD=
120π×22
360
-
1
2
×1×2
作业帮用户 2017-10-13 举报
问题解析
(1)利用角平分线的性质以及等腰三角形的性质得出DO∥HB,即可得出∠ODH=90°,进而得出答案;
(2)①首先得出△BDH∽BAD,进而利用相似三角形的性质得出即可;
②利用锐角三角函数关系得出∠DBA=30°以及NO的长,进而得出∠BOD的度数,再利用扇形面积公式和三角形面积求法得出即可.
名师点评
本题考点:
切线的判定;扇形面积的计算.
考点点评:
此题主要考查了切线的判定与性质以及相似三角形的性质与判定和扇形面积求法和锐角三角函数关系等知识,根据已知得出△BDH∽BAD是解题关键.
我是二维码 扫描下载二维码
3