早教吧作业答案频道 -->数学-->
如图,O是正方形ABCD对角线的交点,AF平分∠BAC交BC于点F,交OB于E.求证OE=1/2CF
题目详情
如图,O是正方形ABCD对角线的交点,AF平分∠BAC交BC于点F,交OB于E.求证OE=1/2CF
▼优质解答
答案和解析
证明:取AF的中点G,连接OG,
∵O、G分别是AC、AF的中点,
∴OG=FC,OG∥FC,
∵正方形ABCD,
∴∠OAB=∠ABO=∠OCB=45°,
∵AF平分∠BAC,
∴∠BAF=∠OAF=22.5°,
∴∠GEO=67.5°,
∵GO∥FC,
∴∠AOG=∠OCB=45°,
∴∠OGE=67.5°,
∴∠GEO=∠OGE,
∴GO=OE,
∴OE=FC.
本题主要考查对正方形的性质,三角形的内角和定理,三角形的中位线,等腰三角形的判定,平行线的性质,三角形的角平分线等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.
∵O、G分别是AC、AF的中点,
∴OG=FC,OG∥FC,
∵正方形ABCD,
∴∠OAB=∠ABO=∠OCB=45°,
∵AF平分∠BAC,
∴∠BAF=∠OAF=22.5°,
∴∠GEO=67.5°,
∵GO∥FC,
∴∠AOG=∠OCB=45°,
∴∠OGE=67.5°,
∴∠GEO=∠OGE,
∴GO=OE,
∴OE=FC.
本题主要考查对正方形的性质,三角形的内角和定理,三角形的中位线,等腰三角形的判定,平行线的性质,三角形的角平分线等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.
看了 如图,O是正方形ABCD对角...的网友还看了以下:
高数问题十分紧急设函数f(x)在(a,b)上可导连续,f(a)=0,a>0求证存在在ξ在高数问题十 2020-05-14 …
关于微积分设f(x),g(x)在[a,b]上连续,在(a,b)内可微,证明存在t∈(a,b),使f 2020-06-10 …
设f(x)为连续函数,f(0)=a,F(t)=∫∫∫Ω{z-f(x^2+y^2+z^2)]dv,其 2020-06-15 …
已知函数f(x)=根号下x+3+(x+2)分之1(1)求函数的定义域(2)求f(-3),f(三分之 2020-07-13 …
f(mx-a)与函数f(b-mx)的图象关于直线(a+b)/2m对称,f(a+mx)和f(b-mx 2020-07-22 …
问个微积分问题,对于定积分∫A(-A)f(x)dx(其中A在上,-A在下),当f(x)是奇函数时候 2020-07-30 …
设f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是()A.limh→+ 2020-07-31 …
无穷积分证明题证明:若无穷积分∫[a,+∞]f(x)dx绝对收敛,而函数g(x)在[a,+∞)是有 2020-08-01 …
数学分析-积分学:求零点个数设f是闭区间[a,b]上的连续函数:1.x的n次方乘f'从a到b的积分 2020-08-01 …
一道概率题设F(x)是连续性随机变量X的分布函数,常数a>0,则问F(X+a)-F(X)对负无穷到 2020-08-02 …