早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,四边形ABCD内接于⊙O,AB为⊙O的直径,C为BD弧的中点,AC、BD交于点E. (1)求证:△CBE∽△CAB;(2)若S△CBE:S△CAB=1:4,求sin∠ABD的值.

题目详情
如图,四边形ABCD内接于⊙O,AB为⊙O的直径,C为BD弧的中点,AC、BD交于点E.

(1)求证:△CBE∽△CAB;
(2)若S△CBE:S△CAB=1:4,求sin∠ABD的值.
▼优质解答
答案和解析
(1)证明:∵点C为弧BD的中点,∴∠DBC=∠BAC,
在△CBE与△CAB中;
∠DBC=∠BAC,∠BCE=∠ACB,
∴△CBE∽△CAB.
(2)连接OC交BD于F点,则OC垂直平分BD
∵S△CBE:S△CAB=1:4,△CBE∽△CAB,
∴AC:BC=BC:EC=2:1,
∴AC=4EC,
∴AE:EC=3:1,
∵AB为⊙O的直径,
∴∠ADB=90°,
∴AD∥OC,则AD:FC=AE:EC=3:1,
设FC=a,则AD=3a,
∵F为BD的中点,O为AB的中点,
∴OF是△ABD的中位线,则OF=
1
2