早教吧 育儿知识 作业答案 考试题库 百科 知识分享

操作探究自我操作:如图1所示,点O为线段MN的中点,直线PQ与MN相交于点O,利用此图,作一对以点O为对称中心的全等△MOA和△NOB,并使A、B两点都在直线PQ上.(只保留作图痕迹,不写作法

题目详情
操作探究自我操作:如图1所示,点O为线段MN的中点,直线PQ与MN相交于点O,利用此图,作一对以点O为对称中心的全等△MOA和△NOB,并使A、B两点都在直线PQ上.(只保留作图痕迹,不写作法)

(1)探究1:如图2所示,在四边形ABCD中,AB∥CD,点E为BC的中点,∠BAE=∠EAF,AF与DC相交于点F,试探究线段AB与AF,CF之间的等量关系,并证明你的结论.
(2)探究2:如图3所示,DE,BC相交于点E,BA交DE于点A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.试探究线段AB与AF,CF之间的等量关系,并证明你的结论.
(3)发现:如图3所示,DE,BC相交于点E,BA交DE于点A,且BE:EC=1:n,∠BAE=∠EDF,CF∥AB.则线段AB与DF,CF之间的等量关系为______.
▼优质解答
答案和解析
=
又∵=
=,即CG=2AB,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴FG=DF,
∴2AB=GC=FG+CF=DF+CF;

(3)发现:nAB=DF+CF.
故答案为:nAB=DF+CF.