早教吧作业答案频道 -->数学-->
假设xyz=x^2+Y^3+Z^3=4,而且X^2Y+XY^2+X^2Z+XZ^2+Y^2Z+YZ^2=12求xy+yz+zx
题目详情
假设xyz=x^2+Y^3+Z^3=4,而且X^2Y+X Y^2+X^2Z+XZ^2+Y^2Z+YZ^2=12 求xy+yz+zx
▼优质解答
答案和解析
是不是题目写错了,第一个条件里的x^2应该是x^3吧
这样已知
xyz = 4
x3+y3+z3 = 4
x2y+xy2+x2z+xz2+y2z+yz2 = 12
设xy+yz+zx = t
则(x+y+z)*(xy+yz+zx) = x2y+xy2+x2z+xz2+y2z+yz2 + 3xyz = 12+3*4 = 24
即(x+y+z)*t = 24
x+y+z = 24/t
另有
(x+y+z)^3 = x3+y3+z3+3(x2y+xy2+x2z+xz2+y2z+yz2)+6xyz = 4+3*12+6*4 = 64
即x+y+z = 4
代入得4=24/t
t = 6
即xy+yz+zx = 6
如果您题目没写错,那真心做不出
这样已知
xyz = 4
x3+y3+z3 = 4
x2y+xy2+x2z+xz2+y2z+yz2 = 12
设xy+yz+zx = t
则(x+y+z)*(xy+yz+zx) = x2y+xy2+x2z+xz2+y2z+yz2 + 3xyz = 12+3*4 = 24
即(x+y+z)*t = 24
x+y+z = 24/t
另有
(x+y+z)^3 = x3+y3+z3+3(x2y+xy2+x2z+xz2+y2z+yz2)+6xyz = 4+3*12+6*4 = 64
即x+y+z = 4
代入得4=24/t
t = 6
即xy+yz+zx = 6
如果您题目没写错,那真心做不出
看了假设xyz=x^2+Y^3+Z...的网友还看了以下:
问几个c问题1,设x=2.5,y=4.7,a=7,则x+a%3*(int)(x+y)%2/4=2, 2020-04-08 …
2^2-1^2=2*1+13^2-2^2=2*2+14^2-3^2=2*3+1……(n+1)^2- 2020-05-19 …
已知三角形的三个顶点分别为A(6,-7),B(-2,3),C(2,1),求AC边上的中线所在的直线 2020-06-03 …
若X,Y,Z为大于2的整数,且XY≡2(modZ),XZ≡2(modY),YZ≡2(modX),求 2020-06-12 …
根式计算化简1、(1/x^2-3x+2)+(1/x^2-x)+(1/x^2+x)+(1/x^2+3 2020-07-30 …
因式分解1.2x^3–x^2z–4x^2y+2xyz+2xy^2–y^2z2.6x^2-7xy-3 2020-08-01 …
换元法苦手,X^4+Y^4+(X+Y)^4=(设X+Y=A,XY=B)A^2-A+1)(A^2+6 2020-08-01 …
5x^2+16x+12=12x^2-29x+15=12x^2-25xy+12y^2=20a^2+42 2020-10-31 …
设实数x>0,y>0,z>0,a>0,b>0,且x,y,z满足条件x^2+y^2-xy=a^2;x^ 2020-11-01 …
求一道预备班数学期中考试的答案小明在做题时发现了一个规律:1*2/1=1-2/1,2*3/1=2/1 2020-11-05 …