早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,E为正方形ABCD中CD边上一点,∠DAE=30°,P为AE的中点,过点P作直线分别与AD、BC相交于点M、N.若MN=AE,则∠AMN等于.

题目详情
如图,E为正方形ABCD中CD边上一点,∠DAE=30°,P为AE的中点,过点P作直线分别与AD、BC相交于点M、N.若MN=AE,则∠AMN等于___.
作业帮
▼优质解答
答案和解析
分为两种情况:①如图1,
作业帮
过N作NF⊥AD于F,
则∠NFA=∠MFN=90°,
∵四边形ABCD是正方形,
∴AD=AB,∠DAB=∠B=∠D=90°,
∴四边形AFNB是矩形,
∴NF=AB=AD,
∵∠NFM=∠D=90°,
在Rt△MFN和Rt△EDA中
MN=A
NF=AD

∴Rt△MFN≌Rt△EDA(HL),
∴∠AMN=∠AED,
∵∠DAE=30°,∠D=90°,
∴∠AMN=∠AED=180°-30°-90°=60°;
②如图2,
作业帮
同法可求Rt△MFN≌Rt△EDA,
所以∠FMN=∠AED=60°,
所以∠AMN=180°-60°=120°.
故答案为:60°或120°