早教吧 育儿知识 作业答案 考试题库 百科 知识分享

请问,求双曲线上两点的向量积(点积)已知,F(c,0)是双曲线x^2-y^2/2=1的右焦点,过右焦点的直线L交双曲线于P,Q两点.O为坐标原点.求,向量OP·向量OQ的值.

题目详情
请问,求双曲线上两点的向量积(点积)
已知,F(c,0)是双曲线x^2-y^2/2=1的右焦点,过右焦点的直线L交双曲线于P,Q两点.O为坐标原点.
求,向量OP·向量OQ的值.
▼优质解答
答案和解析
F(c,0)是双曲线x^2-y^2/2=1的右焦点
c=√3
F(√3,0)
当PQ⊥x轴时
PQ横坐标=√3
代入x^2-y^2/2=1
y=±2
∴向量OP·向量OQ
=(√3,2)(√3,-2)
=3-4
=-1
当PQ不垂直x轴时
设PQ:y=k(x-√3)
P(x1,y2),Q(x2,y2)
y=k(x-√3)与x^2-y^2/2=1联立得
(2-k^2)x^2+2√3k^2x-(3k^2+2)=0
向量OP·向量OQ
=x1x2+y1y2
=x1x2+k^2(x1-√3)(x2-√3)
=x1x2+k^2(x1x2-√3(x1+x2)+3)
=(1+k^2)x1x2-√3k^2(x1+x2)+3k^2
=-(1+k^2)(3k^2+2)/(2-k^2)+√3k^2*2√3k^2/(2-k^2)+3k^2
=(k^2-2)/(2-k^2)
=-1
综上向量OP·向量OQ=-1