早教吧作业答案频道 -->数学-->
四面体ABCD中,AB=2,BC=CD=DB=3,AC=AD=13,则四面体ABCD外接球表面积是.
题目详情
四面体ABCD中,AB=2,BC=CD=DB=3,AC=AD=
,则四面体ABCD外接球表面积是___.
| 13 |
▼优质解答
答案和解析
由题意,△ACD中,CD边上的高为AE=
,△BCD中,CD边上的高为BE=
,
∴AE2=BE2+AB2,
∴AB⊥BE,
∵AB⊥CD,CD∩BE=E,
∴AB⊥平面BCD,
∵△BCD的外接圆的半径为
,
∴四面体ABCD外接球的半径为
=2,
∴四面体ABCD外接球表面积4π•22=16π,
故答案为16π.
| ||
2 |
3
| ||
2 |
∴AE2=BE2+AB2,
∴AB⊥BE,
∵AB⊥CD,CD∩BE=E,
∴AB⊥平面BCD,
∵△BCD的外接圆的半径为
3 |
∴四面体ABCD外接球的半径为
1+3 |
∴四面体ABCD外接球表面积4π•22=16π,
故答案为16π.
看了四面体ABCD中,AB=2,B...的网友还看了以下:
动量定理质量相同的3个小球a、b、c,在光滑水平面上以相同的速度运动,分别与原来静止的3个小球A、 2020-05-20 …
用向量证明余弦定理a、b、c都表示向量,|a|、|b|、|c|表示向量的模因为a=b-c所以a^2 2020-07-07 …
cosBcosC-sinBsinC=cos(B+C)为什么cosBcosC-sinBsinC为什么 2020-07-10 …
a、b、c表示三个数,则乘法结合律可以用()式子表示.A.(a+b)+c=a+(b+c)B.(a× 2020-07-31 …
已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b 2020-08-01 …
已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥ 2020-11-02 …
已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥ 2020-11-02 …
若a,b,c都是负数,并且ca+b<ab+c<bc+a,则a、b、c中()A.a最大B.b最大C.c 2020-11-06 …
若非零有理数a,b,c满足:a的绝对值÷a+b的绝对值÷b+c的绝对值÷c=1,则abc的绝对值÷a 2020-11-18 …
①正实数x,y,满足2x+y+6=xy,则求xy的最小值?②正数a,b,c,则a+1/b,b+1/c 2020-11-19 …