早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求下列双曲线的标准方程:(1)与椭圆=1共焦点且过点(-2)的双曲线.(2)与椭圆=1有共同焦点且在y轴右侧与此椭圆的一个交点的纵坐标为4的双曲线.

题目详情
求下列双曲线的标准方程:

(1)与椭圆 =1共焦点 且过点(-2 )的双曲线.

(2)与椭圆 =1有共同焦点 且在y轴右侧与此椭圆的一个交点的纵坐标为4的双曲线.

▼优质解答
答案和解析
解:(1)由=1知F1(0 -3) F2(0 3).设双曲线的方程为=1(a>0 b>0) 则有∴a2=5 b2=4.∴所求的双曲线的方程为=1.(2)由已知得双曲线两焦点分别为F1(0 -3) F2(0 3) 设双曲线的方程为=1(a>0 b>0) ∵在y轴右侧双曲线与椭圆有一交点纵坐标为4 ∴它们交点为A( 4).∵||AF1|-|AF2||=2a ∴将A、F1、F2的坐标代入得a=2.又∵c=3 ∴b2=c2-a2=5 故所求双曲线的方程为=1.