早教吧 育儿知识 作业答案 考试题库 百科 知识分享

我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数i,使其满足i2=-1(即x2=-1方程有一个根为i),并且进一步规定:一切实数可以与新数进行四则

题目详情

我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数i,使其满足i2=-1(即x2=-1方程有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i,i4=(i22=(-1)2=1,从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4n•i,同理可得i4n+2=-1,i4n+3=-i,i4n=1,那么,1+i+i2+i3+i4+…+i2012+i2013+i2014的值为(  )

A. 0

B. 1

C. -1

D. i

▼优质解答
答案和解析
由题意得,i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1,i5=i4•i=i,i6=i5•i=-1,
故可发现4次一循环,一个循环内的和为0,
2014
4
=503…2,
∴i+i2+i3+i4+…+i2013+i2014=i-1,
∴1+i+i2+i3+i4+…+i2012+i2013+i2014=1+i-1=i.
故选D.
看了我们知道,一元二次方程x2=-...的网友还看了以下: