早教吧 育儿知识 作业答案 考试题库 百科 知识分享

超难高等代数题A,B为n阶半正定矩阵,A的秩=n-1,证明存在可逆阵P,使P(转置)AP,P(转超难高等代数题A,B为n阶半正定矩阵,A的秩=n-1,证明存在可逆阵P,使P(转置)AP,P(转置)BP为对角阵

题目详情
超难高等代数题 A,B为n阶半正定矩阵,A的秩=n-1,证明存在可逆阵P,使P(转置)AP,P(转
超难高等代数题
A,B为n阶半正定矩阵,A的秩=n-1,证明存在可逆阵P,使P(转置)AP,P(转置)BP为对角阵
▼优质解答
答案和解析
rank(A)=n-1这个条件没用
先取可逆阵C使得C^T(A+B)C=diag{I,0},再用正交变换把C^TAC对角化即可
看了超难高等代数题A,B为n阶半正...的网友还看了以下: