早教吧作业答案频道 -->其他-->
(2014•佛山二模)已知等比数列{an}满足a1a2=2a3,且a1,a2+2,a3成等差数列.数列{bn}满足b1log2a1+b2log2a2+…+bnlog2an=n(n+1)2(n∈N*)(1)求数列{an}和{bn}的通项公式.(2)求证:n2(n+2)<nk=1(1-bkb
题目详情
(2014•佛山二模)已知等比数列{an}满足a1a2=2a3,且a1,a2+2,a3成等差数列.数列{bn}满足b1log2a1+b2log2a2+…+bnlog2an=
(n∈N*)
(1)求数列{an}和{bn}的通项公式.
(2)求证:
<
(1-
)
<
(n∈N*).
n(n+1) |
2 |
(1)求数列{an}和{bn}的通项公式.
(2)求证:
n |
2(n+2) |
n |
k=1 |
bk |
bk+1 |
1 | ||
|
5 |
6 |
▼优质解答
答案和解析
(1)∵等比数列{an}满足a1a2=2a3,且a1,a2+2,a3成等差数列,
∴
,
解得
,∴
=2n+1.
∵b1log2a1+b2log2a2+…+bnlog2an=
,
∴2b1+3b2+…+(n+1)bn=
,n=1时,2b1=1,b1=
,
当n≥2时,2b1+3b2+…+(n+1)bn=
,
2b1+3b2+…+nbn-1=
,
两式相减,得(n+1)bn=
−
=n,
∴bn=
.n=1时也成立,
∴bn=
∴
|
解得
|
a | n |
∵b1log2a1+b2log2a2+…+bnlog2an=
n(n+1) |
2 |
∴2b1+3b2+…+(n+1)bn=
n(n+1) |
2 |
1 |
2 |
当n≥2时,2b1+3b2+…+(n+1)bn=
n(n+1) |
2 |
2b1+3b2+…+nbn-1=
(n−1)n |
2 |
两式相减,得(n+1)bn=
n(n+1) |
2 |
n(n−1) |
2 |
∴bn=
n |
n+1 |
∴bn=
看了(2014•佛山二模)已知等比...的网友还看了以下:
为什么3^n+(a-3)*2^(n-1)-3^(n-1)-(a-3)*2^(n-2)=2*3^(n 2020-04-05 …
(8x的n+3方+x的n+2方)(3/4x的n次方+x的n-1方)(a-½)(a+1/3)-(a- 2020-05-14 …
15a^3b^2+5a^2b-20a^2b^x-45bxy2m(a-b)-3n(b-a)(a-3) 2020-06-06 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
正确率要达到90%以上1.(-2)^101+(-2)^100=2.a^3·(-a^2)^3÷a^5 2020-07-22 …
急用填空题:如果甲圆半径是乙圆半径嘚10^2倍,则甲圆嘚面积是乙圆面积的()倍.若a^2=4^b= 2020-07-28 …
小女子感激不尽1.如果a^4+a=0,求a^(2005)+a^(2002)-12的值2.已知10^a 2020-11-01 …
数学题(急)(1)7x^2-63(2)a^3-a(3)3a^2-3b^2(4)y^2-9(x+y)^ 2020-11-01 …
整数数列{a[n]}满足a[1]*a[2]+a[2]*a[3]+…+a[n-1]*a[n]=(n-1 2020-11-19 …
已知数列{a(n)}的前n项和为S(n),且满足a(1)=1,a(n+1)=S(n)+1(n∈N(+ 2021-02-09 …