早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•佛山二模)已知等比数列{an}满足a1a2=2a3,且a1,a2+2,a3成等差数列.数列{bn}满足b1log2a1+b2log2a2+…+bnlog2an=n(n+1)2(n∈N*)(1)求数列{an}和{bn}的通项公式.(2)求证:n2(n+2)<nk=1(1-bkb

题目详情
(2014•佛山二模)已知等比数列{an}满足a1a2=2a3,且a1,a2+2,a3成等差数列.数列{bn}满足b1log2a1+b2log2a2+…+bnlog2an=
n(n+1)
2
(n∈N*
(1)求数列{an}和{bn}的通项公式.
(2)求证:
n
2(n+2)
n
k=1
(1-
bk
bk+1
1
bk+1
5
6
(n∈N*).
▼优质解答
答案和解析
(1)∵等比数列{an}满足a1a2=2a3,且a1,a2+2,a3成等差数列,
a12q=2a1q2
2(a1q+2)=a1+a1q2

解得
a1=4
q=2
,∴
a
 
n
=2n+1.
∵b1log2a1+b2log2a2+…+bnlog2an=
n(n+1)
2

∴2b1+3b2+…+(n+1)bn=
n(n+1)
2
,n=1时,2b1=1,b1=
1
2

当n≥2时,2b1+3b2+…+(n+1)bn=
n(n+1)
2

2b1+3b2+…+nbn-1=
(n−1)n
2

两式相减,得(n+1)bn=
n(n+1)
2
n(n−1)
2
=n,
bn=
n
n+1
.n=1时也成立,
bn=
作业帮用户 2017-09-29 举报
我是二维码 扫描下载二维码