早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2012•湛江)如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的

题目详情
(2012•湛江)如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒
5
3
个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).
(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;
(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;
(3)当t为何值时,△MNA是一个等腰三角形?
▼优质解答
答案和解析
(1)由题意,A(6,0)、B(0,8),则OA=6,OB=8,AB=10;
当t=3时,AN=
5
3
t=5=
1
2
AB,即N是线段AB的中点;
∴N(3,4).
设抛物线的解析式为:y=ax(x-6),则:
4=3a(3-6),a=-
4
9

∴抛物线的解析式:y=-
4
9
x(x-6)=-
4
9
x2+
8
3
x.

(2)过点N作NC⊥OA于C;
由题意,AN=
5
3
t,AM=OA-OM=6-t,NC=NA•sin∠BAO=
5
3
t•
4
5
=
4
3
t;
则:S△MNA=
1
2
AM•NC=
1
2
×(6-t)×
4
3
t=-
2
3
(t-3)2+6.
∴△MNA的面积有最大值,且最大值为6.

(3)∵Rt△NCA中,AN=
5
3
t,NC=AN•sin∠BAO=
4
3
t,AC=AN•cos∠BAO=t;
∴OC=OA-AC=6-t,∴N(6-t,
4
3
t).
∴NM=
(6−t−t)2+(
4
3
t)2
=
52
9
t2−24t+36

又:AM=6-t,AN=
5
3
t(0<t≤6);
①当MN=AN时,