早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2010•攀枝花)如图所示,在矩形ABCD中,AB=6,AD=23,点P是边BC上的动点(点P不与点B,C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点.设CP=x,△P

题目详情
(2010•攀枝花)如图所示,在矩形ABCD中,AB=6,AD=2
3
,点P是边BC上的动点(点P不与点B,C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点.设CP=x,△PQR与矩形ABCD重叠部分的面积为y.
(1)求∠CPQ的度数.
(2)当x取何值时,点R落在矩形ABCD的边AB上?
(3)当点R在矩形ABCD外部时,求y与x的函数关系式.并求此时函数值y的取值范围.
▼优质解答
答案和解析
(1)∵四边形ABCD是矩形,
∴AB=CD,AD=BC;
又AB=6,AD=2
3
,∠C=90°,
∴CD=6,BC=2
3

∴tan∠CDB=
BC
CD
=
3
3

∴∠CDB=30°,∠CBD=60°;
∵PQ∥BD,
∴∠CPQ=∠CBD=60°;

(2)如图,由轴对称的性质知:△RPQ≌△CPQ,
∴∠RPQ=∠CPQ,RP=CP;
由(1)知:∠CPQ=60°,
∴∠RPQ=∠CPQ=60°;
∴∠RPB=60°,
∴RP=2BP;
令CP=x,
∴RP=x,PB=2
3
-x;
在△RPB中,根据题意,得:2(2
3
-x)=x,解得x=
4
3
3


(3)当R在矩形ABCD的外部时,
4
3
3
<x<2
作业帮用户 2017-09-30 举报
问题解析
(1)此题首先要抓住运动变换中的不变量和不变关系:①矩形的长度;②△ABD和△BCD的形状特征及三边关系;③PQ∥BD;④△PQC与△PQR关于PQ对称,满足轴对称的一切性质等;
(2)要找准瞬间状态,准确的画出图形,变动为不动;
(3)以(2)题的结论为界点,分段考虑问题.
名师点评
本题考点:
翻折变换(折叠问题).
考点点评:
此题是“动态类”问题,涉及到矩形的性质、图形的折叠变换、解直角三角形、全等三角形的判定和性质以及图形面积的求法、二次函数的应用等重要知识点,综合性强,注意分类讨论.
我是二维码 扫描下载二维码