早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•郑州一模)如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.(Ⅰ)求几何体ABCDFE的体积;(Ⅱ)

题目详情
(2014•郑州一模)如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求几何体ABCDFE的体积;
(Ⅱ)证明:平面ADE∥平面BCF.
▼优质解答
答案和解析
(Ⅰ)取BC的中点O,ED的中点G,连接AO,OF,FG,AG.
因为△ABC,△DFE都是等边三角形,故有AO⊥BC,且平面BCED⊥平面ABC,
所以AO⊥平面BCED,同理FG⊥平面BCED,
因为AO=FG=
3
,四边形BCED是边长为2的正方形,
所以,VABCDFE= 2•V F−BCED=
1
3
×4×
3
×2=
8
3
3
.…(6分)
(Ⅱ)由(Ⅰ)知AO∥FG,AO=FG,
所以四边形AOFG为平行四边形,故AG∥OF,
又DE∥BC,所以,平面ADE∥平面BCF.…(12分)