早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•安庆三模)在直角坐标系xOy中,点p是单位圆上位于第一象限的动点,过p作x轴的垂线与射线y=xtanθ(x≥0,0<θ<π2)交于点Q,与x轴交于点M,射线与单位圆交于N,设∠MOP=α,且α∈

题目详情
(2014•安庆三模)在直角坐标系xOy中,点p是单位圆上位于第一象限的动点,过p作x轴的垂线与射线y=xtanθ(x≥0,0<θ<
π
2
)交于点Q,与x轴交于点M,射线与单位圆交于N,设∠MOP=α,且α∈(0,θ)
(1)若θ=
π
3
,sinα=
3
5
,求cos∠POQ;
(2)若θ=
π
4
,求四边形OMPN面积的最大值,
(3)并求取最大值时的α值.
▼优质解答
答案和解析
(1)由题意,∠MOQ=
π
3
,∠POQ=∠MOQ-∠∠MOP=
π
3

∵sinα=
3
5
α∈(0,
π
2
),∴cosα=
4
5

所以cos∠POQ=cos(
π
3
-α)=cos
π
3
cosα+sin
π
3
sinα=
4+3
3
10

(2)∵SOMPN=S△OMP+S△OPN=
1
2
cosαsinα+
1
2
sin(
π
4
-α)
=
1
2
cosαsinα+
2
4
(sinα-cosα).
令sinα-cosα=t,∵α∈(0,
π
4
),则t∈(0,1),
∴SOMPN=
1
4
(1-t2)-
2
4
t=-
1
4
(t−
作业帮用户 2016-12-08 举报
问题解析
(1)由题意求出sinα和cosα的值,再根据cos∠POQ=cos(
π
3
-α).利用两角差的余弦公式计算求得结果.
(2)根据SOMPN=S△OMP+S△OPN=
1
2
cosαsinα+
2
4
(sinα-cosα).令sinα-cosα=t,根据 SOMPN=-
1
4
(t−
2
2
)2+
3
8
,利用二次函数的性质求得四边形OMPN面积的最大值.
(3)由(2)可得t=
2
2
时,SOMPN 有最大值
3
8
,此时,cos(α+
π
4
)=
1
2
,根据α+
π
4
的范围,可得α的值.
名师点评
本题考点:
三角函数中的恒等变换应用;任意角的三角函数的定义.
考点点评:
本题主要考查任意角的三角函数的定义,三角函数的恒等变换及化简求值,二次函数的性质,属于中档题.
我是二维码 扫描下载二维码
看了(2014•安庆三模)在直角坐...的网友还看了以下: