如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.如图②,若整个△EFG从图①的位置出发
如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.
如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).
(1)当x为何值时,OP∥AC;
(2)求y与x之间的函数关系式,并确定自变量x的取值范围;
(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)
答案和解析
(1)∵Rt△EFG∽Rt△ABC
∴
=,=
∴FG==3cm
∵当P为FG的中点时,OP∥EG,EG∥AC
∴OP∥AC
∴x==×3=1.5(s)
∴当x为1.5s时,OP∥AC.
(2)在Rt△EFG中,由勾股定理得EF=5cm
∵EG∥AH
∴△EFG∽△AFH
∴==
∴AH=(x+5),FH=(x+5)
过点O作OD⊥FP,垂足为D
∵点O为EF中点
∴OD=EG=2cm
∵FP=3-x
∴S四边形OAHP=S△AFH-S△OFP
=•AH•FH-•OD•FP
=•(x+5)•(x+5)-×2×(3-x)
=x2+x+3(0<x<3).
(3)假设存在某一时刻x,使得四边形OAHP面积与△ABC面积的比为13:24
则S四边形OAHP=×S△ABC
∴x2+x+3=××6×8
∴6x2+85x-250=0
解得x1=,x2=-(舍去)
∵0<x<3
∴当x=(s)时,四边形OAHP面积与△ABC面积的比为13:24.
英语词源寻根auto词源:autos(G),self自己请问autos(G),中的(G)代表什么意 2020-05-15 …
有关拉格朗日定理(群论)的问题拉格朗日定理如下:设是群的一个子群,那么R={|a属于G,b属于G, 2020-05-17 …
在公式V(G)=E–N+2中:E为程序图G中边的总数;N为程序图中结点的总数。V(G)又称为图G的环 2020-05-31 …
英语词源寻根auto词源:autos(G),self自己请问autos(G),中的(G)代表什么意 2020-06-02 …
设G=为无环的无向图,|V|=6,|E|=16,则G是()A.完全图B.零图C.D.多重图设A和B 2020-06-12 …
图论中,图G的ω(G)指的是什么?我知道了,ω(G)表示图G中连通分部个数。它也可以表示图G的权。 2020-06-19 …
已知E1=134kJ/mol、E2=368kJ/mol,请参考题中图表,按要求填空:(1)图Ⅰ是1 2020-07-17 …
非空集合G关于运算○满足;1,对于任意a,b∈G,都有a○b∈G;2,存在e∈G,使对一切a∈G都 2020-08-01 …
非空集合G关于运算⊕满足:(1)对任意的a,b∈G,都有a⊕b∈G,(2)存在e∈G,都有a⊕e= 2020-08-01 …
求高手回答一个代数问题.设G施有限交换群,G中的元素的个数为n,m为正整数,m整除n,证明G必有m阶 2020-11-06 …