早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.如图②,若整个△EFG从图①的位置出发

题目详情
如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.
如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).

(1)当x为何值时,OP∥AC;
(2)求y与x之间的函数关系式,并确定自变量x的取值范围;
(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)
▼优质解答
答案和解析
(1)∵Rt△EFG∽Rt△ABC
EG
AC
FG
BC
4
8
FG
6

∴FG=
4×6
8
=3cm
∵当P为FG的中点时,OP∥EG,EG∥AC
∴OP∥AC
∴x=
1
2
FG
1
=
1
2
×3=1.5(s)
∴当x为1.5s时,OP∥AC.

(2)在Rt△EFG中,由勾股定理得EF=5cm
∵EG∥AH
∴△EFG∽△AFH
EG
AH
EF
AF
FG
FH

∴AH=
4
5
(x+5),FH=
3
5
(x+5)
过点O作OD⊥FP,垂足为D

∵点O为EF中点
∴OD=
1
2
EG=2cm
∵FP=3-x
∴S四边形OAHP=S△AFH-S△OFP
=
1
2
•AH•FH-
1
2
•OD•FP
=
1
2
4
5
(x+5)•
3
5
(x+5)-
1
2
×2×(3-x)
=
6
25
x2+
17
5
x+3(0<x<3).

(3)假设存在某一时刻x,使得四边形OAHP面积与△ABC面积的比为13:24
则S四边形OAHP=
13
24
×S△ABC
6
25
x2+
17
5
x+3=
13
24
×
1
2
×6×8
∴6x2+85x-250=0
解得x1=
5
2
,x2=-
50
3
(舍去)
∵0<x<3
∴当x=
5
2
(s)时,四边形OAHP面积与△ABC面积的比为13:24.