早教吧作业答案频道 -->数学-->
2log4{2log2[1+log2(1+log2x)]}=1\2
题目详情
2log4 {2log2[1+log2(1+log2 x)]}=1\2
▼优质解答
答案和解析
方程式两边同乘以2,
4log4 {2log2[1+log2(1+log2 x)]}=1
方程式右边
1=log2 2……①
方程式左边
4log4 {2log2[1+log2(1+log2 x)]}
=log2^2{2log2[1+log2(1+log2 x)]}^4
=log2{2log2[1+log2(1+log2 x)]}^2……②
有①②得
{2log2[1+log2(1+log2 x)]}^2=2=(√2)^2
2log2[1+log2(1+log2 x)]=√2
[1+log2(1+log2 x)]^2=2^√2
1+log2(1+log2 x)=(√2)^√2
log2(1+log2 x)=(√2)^√2 -1
1+log2 x=2^[(√2)^√2 -1]
log2 x=2^[(√2)^√2 -1] -1
x=2^{2^[(√2)^√2 -1] -1}.
4log4 {2log2[1+log2(1+log2 x)]}=1
方程式右边
1=log2 2……①
方程式左边
4log4 {2log2[1+log2(1+log2 x)]}
=log2^2{2log2[1+log2(1+log2 x)]}^4
=log2{2log2[1+log2(1+log2 x)]}^2……②
有①②得
{2log2[1+log2(1+log2 x)]}^2=2=(√2)^2
2log2[1+log2(1+log2 x)]=√2
[1+log2(1+log2 x)]^2=2^√2
1+log2(1+log2 x)=(√2)^√2
log2(1+log2 x)=(√2)^√2 -1
1+log2 x=2^[(√2)^√2 -1]
log2 x=2^[(√2)^√2 -1] -1
x=2^{2^[(√2)^√2 -1] -1}.
看了 2log4{2log2[1+...的网友还看了以下:
2log4{2log2[1+log2(1+log2x)]}=1\2 2020-05-13 …
函数y=2log4(1-x)的图象大致是()A.B.C.D. 2020-07-19 …
那1/2log4为底数x为真数为什么=log2为底数x为真数log以a^n为底(b^m)的对数=( 2020-07-30 …