早教吧 育儿知识 作业答案 考试题库 百科 知识分享

原命题和逆反命题为什么等价不要说公理无需证明昂

题目详情
原命题和逆反命题为什么等价
不要说公理无需证明昂
▼优质解答
答案和解析
我找到的解释:
这可用集合的原理来解释
假设有一个命题:若P则Q,于是该命题的逆否命题为:若非Q则非P如何证明他们等价呢?可以把条件P和条件Q分别看作是两个集合P,Q,
原命题“若P则Q ” 说明某件事如果满足P,则一定也满足Q,这相当于说“属于集合P的元素一定属于集合Q ”
所以可知:P包含于Q,即P∩Q=P,也即P∪Q=Q
逆否命题“若非Q则非P ”说明某件事如果不满足Q,则一定也不满足P,这相当于说“如果一个元素不属于集合Q,则它一定不属于集合P ” 但是,如果一个元素不属于集合Q,那么它一定属于Q的补集;同理,如果一个元素不属于集合P,那么它一定属于P的补集.因此上面那句话又可以理解为“如果一个元素属于Q的补集,则它一定属于P的补集”
所以可知(假设全集为I):I-Q包含于I-P,即(I-Q)∩(I-P)=I-Q,根据德.摩根定律得:Q∪P=Q,即P∪Q=Q.这和我们从原命题中得到的结论是一致的
因此,原命题等价于逆否命题.同理可得,否命题等价于逆命题.
举个很简单的例子:
原命题:你是你爸的儿子.
逆否命题:不是你爸的儿子不是你.
看了原命题和逆反命题为什么等价不要...的网友还看了以下: