早教吧 育儿知识 作业答案 考试题库 百科 知识分享

关于相对论飞船朝向地球以0.99c运动,地球上的观测者会认为飞船上时间流逝的比较慢,而飞船上的观测者则会有相反的意见,那么两个观测者谁会老的跟快呢?

题目详情
关于相对论
飞船朝向地球以0.99c运动,地球上的观测者会认为飞船上时间流逝的比较慢,而飞船上的观测者则会有相反的意见,那么两个观测者谁会老的跟快呢?
▼优质解答
答案和解析
kangxi2nd 经理 四级(1501) | 我的贡献 | 我的消息(0/1) | 我的空间 | 百度首页 | 退出

新闻 网页 贴吧 知道 MP3 图片 视频 百科 帮助

添加到搜藏 返回百度百科首页
编辑词条 相对论目录
【基本概念】
【编译目录】
【提出过程】
【狭义理论】
【佯谬问题】
【广义理论】
【蚁蜂说法】
【批评声音】
【注意】
【注意】

[编辑本段]【基本概念】
相对论(Principle of relativity relativism[5relEtivizEm] relativity[7relE5tiviti] theory of relativity)
相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论).相对论的基本假设是相对性原理,即物理定律与参照系的选择无关.狭义相对论和广义相对论的区别是,前者讨论的是匀速直线运动的参照系(惯系参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中.相对论和量子力学是现代物理学的两大基本支柱.奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观领域.相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题.相对论颠覆了人类对宇宙和自然的“常识性”观念,提出了“时间和空间的相对性”、“四维时空”、“弯曲空间”等全新的概念.狭义相对论提出于1905年,广义相对论提出于1915年.
由于牛顿定律给狭义相对论提出了困难,即任何空间位置的任何物体都要受到力的作用.因此,在整个宇宙中不存在惯性观测者.爱因斯坦为了解决这一问题又提出了广义相对论.
狭义相对论最著名的推论是质能公式,它可以用来计算核反应过程中所释放的能量,并导致了原子弹的诞生.而广义相对论所预言的引力透镜和黑洞,也相继被天文观测所证实.
[编辑本段]【编译目录】
《相对论》是爱因斯坦所著的一部在世界科学理论界影响巨大的著作,主要包括狭义相对论和广义相对论原理的阐述,中文版本由周学政、徐有智编译,编译目录如下:
·第一部分 狭义相对论
1.几何命题的物理意义
2.坐标系
3.经典力学中的空间和时间
4.伽利略坐标系
5.狭义相对性原理
6.经典力学中所用到的速度相加原理
7.光的传播定律与相对性原理的表面抵触
8.物理学的时间观
9.同时性的相对性
10.距离概念的相对性
11.洛伦兹变换
12.量杆和时钟在运动时的行为
13.速度相加原理:斐索试验
14.相对论的启发作用
15.狭义相对论的普遍性结果
16.经验和狭义相对论
17.四维空间
·第二部分 广义相对论
1.狭义和广义相对性原理
2.引力场
3.引力场的思想试验
4.惯性质量和引力质量相等是广义相对性公设的一个论据
5.等效原理
6.经典力学的基础和狭义相对伦的基础在哪些方面不能令人满意
7.广义相对性原理的几个推论
8.在转动的参考物上的钟和量杆的行为
9.欧几里得和非欧几里得连续区域
10.高斯坐标
11.狭义相对论得时空连续区可以当作欧几里得连续区
12.广义相对论得时空连续区不是欧几里得连续区
13.广义相对论原理的严格表述
14.在广义相对性原理的基础上理解引力问题.
[编辑本段]【提出过程】
除了量子理论以外,1905年刚刚得到博士学位的爱因斯坦发表的一篇题为《论动体的电动力学》的文章引发了二十世纪物理学的另一场革命.文章研究的是物体的运动对光学现象的影响,这是当时经典物理学面对的另一个难题.
十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速C传播的电磁波的存在.到十九世纪末,实验完全证实了麦克斯韦理论.电磁波是什么?它的传播速度C是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种特殊物质叫做“以太”,电磁波是以太振动的传播.但人们发现,这是一个充满矛盾的理论.如果认为地球是在一个静止的以太中运动,那么根据速度叠加原理,在地球上沿不同方向传播的光的速度必定不一样,但是实验否定了这个结论.如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符.
1887年迈克尔逊和莫雷利用光的干涉现象进行了非常精确的测量,仍没有发现地球有相对于以太的任何运动.对此,洛仑兹(H.A.Lorentz)提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩.由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它.爱因斯坦从完全不同的思路研究了这一问题.他指出,只要摒弃牛顿所确立的绝对空间和绝对时间的概念,一切困难都可以解决,根本不需要什么以太.
爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础.第一个叫做相对性原理.它是说:如果坐标系K'相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K′.第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度.
从表面上看,光速不变似乎与相对性原理冲突.因为按照经典力学速度的合成法则,对于K′和K这两个做相对匀速运动的坐标系,光速应该不一样.爱因斯坦认为,要承认这两个原理没有抵触,就必须重新分析时间与空间的物理概念.
经典力学中的速度合成法则实际依赖于如下两个假设:
1.两个事件发生的时间间隔与测量时间所用的钟的运动状态没有关系;
2.两点的空间距离与测量距离所用的尺的运动状态无关.
爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃.这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性.在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等.距离也有了相对性.
如果设K坐标系中一个事件可以用三个空间坐标x、y、z和一个时间坐标t来确定,而K′坐标系中同一个事件由x′、y′、z′和t′来确定,则爱因斯坦发现,x′、y′、z′和t′可以通过一组方程由x、y、z和t求出来.两个坐标系的相对运动速度和光速c是方程的唯一参数.这个方程最早是由洛仑兹得到的,所以称为洛仑兹变换.
利用洛仑兹变换很容易证明,钟会因为运动而变慢,尺在运动时要比静止时短,速度的相加满足一个新的法则.相对性原理也被表达为一个明确的数学条件,即在洛仑兹变换下,带撇的空时变量x'、y'、z'、t'将代替空时变量x、y、z、t,而任何自然定律的表达式仍取与原来完全相同的形式.人们称之为普遍的自然定律对于洛仑兹变换是协变的.这一点在我们探索普遍的自然定律方面具有非常重要的作用.
此外,在经典物理学中,时间是绝对的.它一直充当着不同于三个空间坐标的独立角色.爱因斯坦的相对论把时间与空间联系起来了.认为物理的现实世界是各个事件组成的,每个事件由四个数来描述.这四个数就是它的时空坐标t和x、y、z,它们构成一个四维的连续空间,通常称为闵可夫斯基四维空间.在相对论中,用四维方式来考察物理的现实世界是很自然的.狭义相对论导致的另一个重要的结果是关于质量和能量的关系.在爱因斯坦以前,物理学家一直认为质量和能量是截然不同的,它们是分别守恒的量.爱因斯坦发现,在相对论中质量与能量密不可分,两个守恒定律结合为一个定律.他给出了一个著名的质量-能量公式:E=mc^2,其中c为光速.于是质量可以看作是它的能量的量度.计算表明,微小的质量蕴涵着巨大的能量.这个奇妙的公式为人类获取巨大的能量,制造原子弹和氢弹以及利用原子能发电等奠定了理论基础.
对爱因斯坦引入的这些全新的概念,大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受.旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔奖金授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了光电效应的定律.”对于相对论只字未提.
爱因斯坦于1915年进一步建立起了广义相对论.狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了.他引入了一个等效原理,认为我们不可能区分引力效应和非匀速运动,即非匀速运动和引力是等效的.他进而分析了光线在靠近一个行星附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要.可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线.基于这些讨论,爱因斯坦导出了一组方程,它们可以确定由物质的存在而产生的弯曲空间几何.利用这个方程,爱因斯坦计算了水星近日点的位移量,与实验观测值完全一致,解决了一个长期解释不了的困难问题,这使爱因斯坦激动不已.他在写给埃伦菲斯特的信中这样写道:“……方程给出了近日点的正确数值,你可以想象我有多高兴!有好几天,我高兴得不知怎样才好.”
1915年11月25日,爱因斯坦把题为“万有引力方程”的论文提交给了柏林的普鲁士科学院,完整地论述了广义相对论.在这篇文章中他不仅解释了天文观测中发现的水星轨道近日点移动之谜,而且还预言:星光经过太阳会发生偏折,偏折角度相当于牛顿理论所预言的数值的两倍.第一次世界大战延误了对这个数值的测定.1919年5月25日的日全食给人们提供了大战后的第一次观测机会.英国人爱丁顿奔赴非洲西海岸的普林西比岛,进行了这一观测.11月6日,汤姆逊在英国皇家学会和皇家天文学会联席会议上郑重宣布:得到证实的是爱因斯坦而不是牛顿所预言的结果.他称赞道“这是人类思想史上最伟大的成就之一.爱因斯坦发现的不是一个小岛,而是整整一个科学思想的新大陆.”泰晤士报以“科学上的革命”为题对这一重大新闻做了报道.消息传遍全世界,爱因斯坦成了举世瞩目的名人.广义相对论也被提高到神话般受人敬仰的宝座.
从那时以来,人们对广义相对论的实验检验表现出越来越浓厚的兴趣.但由于太阳系内部引力场非常弱,引力效应本身就非常小,广义相对论的理论结果与牛顿引力理论的偏离很小,观测非常困难.七十年代以来,由于射电天文学的进展,观测的距离远远突破了太阳系,观测的精度随之大大提高.特别是1974年9月由麻省理工学院的泰勒和他的学生赫尔斯,用305米口径的大型射电望远镜进行观测时,发现了脉冲双星,它是一个中子星和它的伴星在引力作用下相互绕行,周期只有0.323天,它的表面的引力比太阳表面强十万倍,是地球上甚至太阳系内不可能获得的检验引力理论的实验室.经过长达十余年的观测,他们得到了与广义相对论的预言符合得非常好的结果.由于这一重大贡献,泰勒和赫尔斯获得了1993年诺贝尔物理奖.
[编辑本段]【狭义理论】
·狭义相对论的概念
马赫和休谟的哲学对爱因斯坦影响很大.马赫认为时间和空间的量度与物质运动有关.时空的观念是通过经验形成的.绝对时空无论依据什么经验也不能把握.休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间.而时间总是又能够变化的对象的可觉察的变化而发现的.1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的.而牛顿的绝对时空观念是错误的.不存在绝对静止的参照物,时间测量也是随参照系不同而不同的.他用光速不变和相对性原理提出了洛仑兹变换.创立了狭义相对论.
狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解.在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间.现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论.
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知.我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的.四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系.
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大.在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了.在四维时空里,动量和能量实现了统一,称为能量动量四矢.另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等.值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述.四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的.可以说至少它比牛顿力学要完美的多.至少由它的完美性,我们不能对它妄加怀疑.
相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量.这说明自然界一些看似毫不相干的量之间可能存在深刻的联系.在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系.
·狭义论公式
相对论公式及证明
符号 单位 符号 单位
坐标(x,y,z):m 力F(f): N
时间t(T): s 质量m(M): kg
位移r: m 动量p: kg*m/sm
速度v(u): m/s 能量E: J
加速度a: m/s^2 冲量: N*s I
长度l(L): m 动能Ek: J
路程s(S): m 势能Ep: J
角速度ω: rad/s 力矩: N*m M
角加速度: rad/s^2α 功率P: W
一:
牛顿力学(预备知识)
(一):质点运动学基本公式:(1)v=dr/dt,r=r0+∫rdt
(2)a=dv/dt,v=v0+∫adt
(注:两式中左式为微分形式,右式为积分形式)
当v不变时,(1)表示匀速直线运动.
当a不变时,(2)表示匀变速直线运动.
只要知道质点的运动方程r=r(t),它的一切运动规律就可知了.
(二):质点动力学:
(1)牛一:一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态.
(2)牛二:物体加速度与合外力成正比与质量成反比.
F=ma=mdv/dt=dp/dt
(3)牛三:作用在同一物体上的两个力,如果等大反向作用在同一直线上,则二力平衡.
(4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比.
F=GMm/r^2,G=6.67259*10^(-11)m^3/(kg*s^2)
动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的
看了关于相对论飞船朝向地球以0.9...的网友还看了以下:

测量所能达到的准确程度是由()A.测量者决定B.由测量的最小刻度决定.C.由测量工具决定.D.由测  2020-06-08 …

抓直尺测试反应时间(科学八上神经调节的问题)(1)若(),则说明被测试者反应越快.(2)在实验中每  2020-06-24 …

高速前进中的一列火车的车头和车尾各遭到一次闪电轰击.据车上的观察者测定这两次轰击是同时发生的.试问  2020-07-01 …

公布特大地震的预测,会有什么后果?假如是有足够准确率的预测,为什么要封闭消息呢?是不是有什么利益关  2020-07-12 …

人们在检测视力时,都会辨认《标准对数视力表》,其原理是:视标“E”的大小测试者能看到的最小视角α是  2020-08-01 …

在测量物体的长度时,由于下列哪种原因会造成测量的误差()A.测量者在读数时,其视线与刻度尺成30°角  2020-11-17 …

在线等我用试剂盒提取的DNA测分光光度,提取完马上测的和过一会儿测的结果为什么不一样我用qiagen  2020-12-17 …

如图所示,是某同学设计的一台体重测量仪的工作原理图,当测量者站在体重测量台上时,滑片P会滑动到金属片  2020-12-17 …

关于误差的正确说法是:()A.在正确认真的测量下,不会产生误差B.用精度很高的刻度尺测量长度,也会出  2020-12-31 …

测定胸围差时,一测量者软尺围绕受测者的,在胸前下缘软尺要与上缘平齐;另一测量者在受测者背侧,将软尺固  2021-01-01 …