早教吧 育儿知识 作业答案 考试题库 百科 知识分享

集合与不等式数学题对于实数a1,a2,a3属于R+,用(a1+a2)/2>=根号(a1a2)的推广形式求f(x)=x^2+1/x(x>0)的最小值已知全集U={x||x-1|1,x属于Z},A补交B补=空集,求集合A,B

题目详情
集合与不等式数学题
对于实数a1,a2,a3属于R+,用(a1+a2)/2>=根号(a1a2)的推广形式求f(x)=x^2+1/x(x>0)的最小值
已知全集U={x||x-1|1,x属于Z},A补交B补=空集,求集合A,B
▼优质解答
答案和解析
1、推广:
(a1+a2+a3)/3≥3次根号下(a1a2a3)
∴f(x)=x²+1/x=x²+(1/2x)+(1/2x)≥3×3次根号下(1/4).这就是最小值.
2、U={-3,-2,-1,0,1,2,3,4,5}
∵A交B补={x|x^2+5x+6=0}={-3,-2},
∴A中必有-3,-2;
∵A补交B={x|x>1,x属于Z}={2,3,4,5},
∴B中必有2,3,4,5.
又A补交B补=空集,
∴A={-3,-2,-1,0,1},B={-1,0,1,2,3,4,5}