早教吧作业答案频道 -->数学-->
对于在[a,b]上有意义的两个函数f(x)与g(x),如果对任意的x∈[a,b],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[a,b]上是接近的,否则称f(x)与g(x)在[a,b]上是非接近的.现在有
题目详情
对于在[a,b]上有意义的两个函数f(x)与g(x),如果对任意的x∈[a,b],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[a,b]上是接近的,否则称f(x)与g(x)在[a,b]上是非接近的.现在有两个函数f(x)=logt(x-3t)与g(x)=logt(
)(t>0且t≠1),现给定区间[t+2,t+3].
(1)若t=
,判断f(x)与g(x)是否在给定区间上接近;
(2)若f(x)与g(x)在给定区间[t+2,t+3]上都有意义,求t的取值范围;
(3)讨论f(x)与g(x)在给定区间[t+2,t+3]上是否是接近的.
1 |
x−t |
(1)若t=
1 |
2 |
(2)若f(x)与g(x)在给定区间[t+2,t+3]上都有意义,求t的取值范围;
(3)讨论f(x)与g(x)在给定区间[t+2,t+3]上是否是接近的.
▼优质解答
答案和解析
(1)当t=
时,f(x)-g(x)=log
[(x-
)(x-
)]=log
[(x−1)2−
],
令h(x)=log
[(x−1)2−
],
当x∈[
,
]时,h(x)∈[log
6,-1],
即|f(x)-g(x)|≥1,
f(x)与g(x)是否在给定区间上是非接近的;
(2)由题意知,t>0且t≠1,t+2-3t>0,t+2-t>0
∴0<t<1
(3)∵|f(x)-g(x)|=|logt(x2-4tx+3t2)|
假设f(x)与g(x)在给定区间[t+2,t+3]上是接近的,
则有|logt(x2-4tx+3t2)|≤1
∴-1≤logt(x2-4tx+3t2)≤1…*
令G(x)=logt(x2-4tx+3t2),
当0<t<1时,[t+2,t+3]在x=2t的右侧,
即G(x)=logt(x2-4tx+3t2)在[t+2,t+3]上为减函数,
∴G(x)max=logt(4-4t),
∴G(x)min=logt(9-6t),
所以由(*)式可得0<t<1,logt(4-4t)≤1,logt(9-6t)≥-1,
解得:0<t≤
因此,当0<t≤
时,f(x)与g(x)在给定区间[t+2,t+3]上是接近的;当t>
时,
f(x)与g(x)在给定区间[t+2,t+3]上是非接近的.…(14分)
1 |
2 |
1 |
2 |
3 |
2 |
1 |
2 |
1 |
2 |
1 |
4 |
令h(x)=log
1 |
2 |
1 |
4 |
当x∈[
5 |
2 |
7 |
2 |
1 |
2 |
即|f(x)-g(x)|≥1,
f(x)与g(x)是否在给定区间上是非接近的;
(2)由题意知,t>0且t≠1,t+2-3t>0,t+2-t>0
∴0<t<1
(3)∵|f(x)-g(x)|=|logt(x2-4tx+3t2)|
假设f(x)与g(x)在给定区间[t+2,t+3]上是接近的,
则有|logt(x2-4tx+3t2)|≤1
∴-1≤logt(x2-4tx+3t2)≤1…*
令G(x)=logt(x2-4tx+3t2),
当0<t<1时,[t+2,t+3]在x=2t的右侧,
即G(x)=logt(x2-4tx+3t2)在[t+2,t+3]上为减函数,
∴G(x)max=logt(4-4t),
∴G(x)min=logt(9-6t),
所以由(*)式可得0<t<1,logt(4-4t)≤1,logt(9-6t)≥-1,
解得:0<t≤
9−
| ||
12 |
因此,当0<t≤
9−
| ||
12 |
9−
| ||
12 |
f(x)与g(x)在给定区间[t+2,t+3]上是非接近的.…(14分)
看了对于在[a,b]上有意义的两个...的网友还看了以下:
两个可导函数乘积是否可导?为什么?设f(x)在[a.b]上连续,且对所有那些在[a,b]上满足附加 2020-05-13 …
设函数f(x)在(-∞,+∞)内可导,且恒有f′(x)>0,则下列结论正确的是()A.f(x)在R 2020-05-13 …
对于区间[m,n]上有意义的两个函数f(x)与g(x),如果任意x∈[m,n],均有|f(x)-g 2020-05-17 …
定义在D上的函数y=f(x),若存在x0∈D,对任意的x∈D,都有f(x)≥f(x0)或f(x)≤ 2020-06-03 …
若f(x)是R上的奇函数,且f(x)在[0,+∞)上单调递增,则下列结论:①y=|f(x)|是偶函 2020-06-05 …
设函数f(x)=e^(x-1)+a/x(1)若函数f(x)在x=1处有极值且g(x)=f(x)+b 2020-06-06 …
设函数f(x)在数集x上有定义,试证函数f(x)在x上有界的充分必要条件是它在x上既有上界又有下界 2020-06-22 …
f(x)在X上有界的充分必要条件是它在X上既有上界又有下界充分性:反证法,假设f(x)在X上没有上 2020-06-23 …
sin(1/x)是不是在X趋于0时有界,在X趋于无穷时无界 2020-06-23 …
一道二次函数题二次函数y=ax^2+bx+c的图象如图所示(呵,打不出图,不过可以大概描述出来.抛 2020-07-03 …