早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系XOY中,矩形OEFG的顶点E坐标为(4,0),顶点G坐标为(0,2).将矩形OEFG绕点O逆时针旋转,使点F落在轴的N处,得到矩形OMNP,OM与GF交于点A.(1)判断△OGA和△OMN是否相似,并说明
题目详情
如图,在平面直角坐标系XOY中,矩形OEFG的顶点E坐标为(4,0),顶点G坐标为(0,2).将矩形OEFG绕点O逆时针旋转,使点F落在轴的N处,得到矩形OMNP,OM与GF交于点A.
(1)判断△OGA和△OMN是否相似,并说明理由
(2)求过点A的反比例函数解析式
(3)设(2)中的反比例函数的图像交EF于点B,求直线AB的解析式
(4)请探索:求出的反比例函数的图像是否经过矩形OEFG的对称中心,并说明理由
(1)判断△OGA和△OMN是否相似,并说明理由
(2)求过点A的反比例函数解析式
(3)设(2)中的反比例函数的图像交EF于点B,求直线AB的解析式
(4)请探索:求出的反比例函数的图像是否经过矩形OEFG的对称中心,并说明理由
▼优质解答
答案和解析
1)角GOA=角MON 角AGO=角NMO 所以相似(相似三角形的判定有点忘记了,但相信你能解决的)
2)先求过点O、A、M 的直线方程,即通过该方程解A的坐标,所以先得求M的坐标具体过程如下:
过M作MC垂直于Y轴于C
易得NO=根号(4^2+2^2)=2根号5
在RT三角形ONM中 S=S即NM*OM=ON*CM
易得CM=4根号5/5
在RT三角形CMO中OC^2+GM^2=OM^2
得OC=8根号5/5
所以M(4根号5/5,8根号5/5)
令直线OM方程为y=kx(k不=0)
把M带入
得k=2
易得A的纵坐标为2
设A(x,2)
把A带入y=2x
的x=1
所以A(1,2)
设反比例函数为y=k'/x
把A带入
得k'=2
所以该反比例函数的解析式为y=2/x
3)求AB的解析式即求B点坐标,连列反比例函数和直线EF方程可得B的坐标
易得,直线EF方程为x=4
x=4
y=2/x
的x=4 y=1/2
B(4,1/2)
设直线AB的解析式为y=k''x+b
把A、B带入
得k''=-1/2 b=5/2
所以直线AB:y=-1/2x+5/2
4)矩形的对称中心即矩形的中心,把中心点算出来看是否符合反比例函数解析式
令矩形OGFE中心为D
可得D(2,1)
把D带入反比例函数
左边=1
右边=2/2=1
左边=右边
成立
如果要推广到E、F为任意坐标情况
同样可以按照上述2)-4)过程求解
2)先求过点O、A、M 的直线方程,即通过该方程解A的坐标,所以先得求M的坐标具体过程如下:
过M作MC垂直于Y轴于C
易得NO=根号(4^2+2^2)=2根号5
在RT三角形ONM中 S=S即NM*OM=ON*CM
易得CM=4根号5/5
在RT三角形CMO中OC^2+GM^2=OM^2
得OC=8根号5/5
所以M(4根号5/5,8根号5/5)
令直线OM方程为y=kx(k不=0)
把M带入
得k=2
易得A的纵坐标为2
设A(x,2)
把A带入y=2x
的x=1
所以A(1,2)
设反比例函数为y=k'/x
把A带入
得k'=2
所以该反比例函数的解析式为y=2/x
3)求AB的解析式即求B点坐标,连列反比例函数和直线EF方程可得B的坐标
易得,直线EF方程为x=4
x=4
y=2/x
的x=4 y=1/2
B(4,1/2)
设直线AB的解析式为y=k''x+b
把A、B带入
得k''=-1/2 b=5/2
所以直线AB:y=-1/2x+5/2
4)矩形的对称中心即矩形的中心,把中心点算出来看是否符合反比例函数解析式
令矩形OGFE中心为D
可得D(2,1)
把D带入反比例函数
左边=1
右边=2/2=1
左边=右边
成立
如果要推广到E、F为任意坐标情况
同样可以按照上述2)-4)过程求解
看了 如图,在平面直角坐标系XOY...的网友还看了以下:
"似的""似乎""相似"三个词语中"似"的读音相同:()判断对错学习帮助 2020-04-22 …
数学圆与直线关系的问题已知A(-2,0)B(2,0)C(m,n),若以线段AB为直径的圆O过点C( 2020-04-27 …
在三角形ABC中AB=AC,以AB为直径的圆O交BC于D,交AC于E,当∠A为锐角时,连接BE,判 2020-04-27 …
比较简单的数学问题(不是应用题、类似判断)下面哪些情况用了估算?为什么?1你去菜场买菜,差不多用完 2020-05-13 …
下列各组词语注音完全正确的一项是()(2分)A.金钗(chāi)藩(fán)篱劲(jìn)弩纨(w 2020-05-14 …
如图,在平行四边形ABCD中,过A、B、C三点的圆O交AD于点E,且与CD相切.求证:△CED相似 2020-05-16 …
如何进行图形文字组合商标的近似判断? 2020-05-19 …
英语翻译CorporateIncomeTaxes,Valuation,andtheProblemo 2020-05-23 …
O'在圆O上,以O'为圆心的圆交O'于A,B,圆O的弦O'C交圆O;于D,求证D为三角形abc内心 2020-06-02 …
直角三角形相似判断条件是AB/A'B'=AC/A'C'还是AB/A'C'='AB'/AC 2020-06-02 …