早教吧 育儿知识 作业答案 考试题库 百科 知识分享

“三角形的三条中线交于一点,且这一点到顶点的距离等于它到对边中点距离的2倍”试类比:四面体的四条中线(顶点到对面三角形重心的连线段)交于一点,且这一点到顶点的距离等于它

题目详情
“三角形的三条中线交于一点,且这一点到顶点的距离等于它到对边中点距离的2倍”试类比:四面体的四条中线(顶点到对面三角形重心的连线段)交于一点,且这一点到顶点的距离等于它到对面重心距离的______倍.
▼优质解答
答案和解析
由平面图形的性质类比猜想空间几何体的性质,
一般的思路是:点到线,线到面,或是二维变三维;
由题目中“三角形的三条中线交于一点,且这一点到顶点的距离等于它到对边中点距离的2倍”,
我们可以推断:“四面体的四条中线(顶点到对面三角形重心的连线段)交于一点,且这一点到顶点的距离等于它到对面重心距离的3倍.”
如图,△ABE中,M、N为AE、BE的三等分点,
∴MN∥AB,AB=3MN,∴AG=3GM.(用正四面体验证也可)
故答案为:3.