早教吧作业答案频道 -->数学-->
对于任意正数a,b有f(ab)=f(a)+f(b),且f(1)的导数=1 证明f(x) 在零到正无穷可导,求f(x) 设f(x)函数满足f(x1+x2)=f(x1)*f(x2),其中x1,x2为任意实数,而且已知f(0)的导数=2 求f(x) f(x)的导数f(a*b) 这题答案第一个好
题目详情
对于任意正数a,b有f(ab)=f(a)+f(b),且f(1)的导数=1 证明f(x) 在零到正无穷可导,求f(x)
设f(x)函数满足f(x1+x2)=f(x1)*f(x2),其中x1,x2为任意实数,而且已知f(0)的导数=2
求f(x)
f(x)的导数
f(a*b)
这题答案第一个好象是ln (x)
第二个好象是e的2t次方
但是我不会求
第一个 ZBOE做的好象是对的
w5535846495 的做法好象有待商榷
第二个 我还么弄明白
设f(x)函数满足f(x1+x2)=f(x1)*f(x2),其中x1,x2为任意实数,而且已知f(0)的导数=2
求f(x)
f(x)的导数
f(a*b)
这题答案第一个好象是ln (x)
第二个好象是e的2t次方
但是我不会求
第一个 ZBOE做的好象是对的
w5535846495 的做法好象有待商榷
第二个 我还么弄明白
▼优质解答
答案和解析
试一下吧
第一题:
f(a)=f(a)+f(1)
f(1)=0
f(b/b)=f(b)+f(1/b)=0
f(b)=-f(1/b)
f(a/b)=f(a)-f(b)
lim((f(a)-f(b))/(a-b))=lim(f(a/b)/(a-b))=lim(f(1+(a-b)/b)/(a-b))=lim((f(1+(a-b)/b)-f(1))/((a-b)/b))/b a-b趋于0 即(a-b)/b趋于0
f'(b)=f'(1)/b=1/b
f(b)=lnb+C
代入f(1)=0得C=0
所以f(x)=lnx
第二题
f(x)=f(x)*f(0)
f(x)=0(不满足f(0)的导数=2)或f(0)=1
lim((f(x+dx)-f(x))/(dx))=lim((f(x)*f(dx)-f(x))/(dx))=lim(f(x)*(f(dx)-1)/(dx))=f(x)*lim((f(0+dx)-f(0))/(dx))=f(x)*f'(0)=2*f(x) dx趋于0
即f'(x)=2*f(x)
ln(y)=2*x+C
代入f(0)=1得C=0
所以y=exp(2*x)
(这么多小括号,可能多少半个我自己也搞不清楚了)
第一题:
f(a)=f(a)+f(1)
f(1)=0
f(b/b)=f(b)+f(1/b)=0
f(b)=-f(1/b)
f(a/b)=f(a)-f(b)
lim((f(a)-f(b))/(a-b))=lim(f(a/b)/(a-b))=lim(f(1+(a-b)/b)/(a-b))=lim((f(1+(a-b)/b)-f(1))/((a-b)/b))/b a-b趋于0 即(a-b)/b趋于0
f'(b)=f'(1)/b=1/b
f(b)=lnb+C
代入f(1)=0得C=0
所以f(x)=lnx
第二题
f(x)=f(x)*f(0)
f(x)=0(不满足f(0)的导数=2)或f(0)=1
lim((f(x+dx)-f(x))/(dx))=lim((f(x)*f(dx)-f(x))/(dx))=lim(f(x)*(f(dx)-1)/(dx))=f(x)*lim((f(0+dx)-f(0))/(dx))=f(x)*f'(0)=2*f(x) dx趋于0
即f'(x)=2*f(x)
ln(y)=2*x+C
代入f(0)=1得C=0
所以y=exp(2*x)
(这么多小括号,可能多少半个我自己也搞不清楚了)
看了 对于任意正数a,b有f(ab...的网友还看了以下:
1、已知函数f(x)=ax^5+bx^3+cx+5(abc都是常数),且f(5)=9,求f(-5) 2020-05-14 …
一个函数连续,一个函数不连续,那么这两个函数的商连续吗答案是不连续.设f(x)是连续的,F(x)是 2020-05-16 …
设定义在R上的函数f(x)对任意x1、x2满足f(x1+x2)=f(x1)f(x2),且f(x)在 2020-05-17 …
已知f(x)在定义域(0,正无穷)且f(x)为增函数.f(xy)=f(x)+f(y),f(3)=1 2020-06-02 …
函数的间断点问题啊不是连续的函数中的跳跃间断点要f(x-)与f(x+)都存在,且f(x-)≠f(x 2020-06-06 …
要高考了,问一下,f(a+x)=f(a-x)等价于f(2a-x)=f(x),可以推出T=2a和对称 2020-06-10 …
证若f是[a,正无穷)上的单调函数,且∫a到正无穷分f(x)dx收敛,则x趋向于正无穷是时f(x) 2020-06-22 …
定积分求证~函数f(x)在[a,b]上连续,且f(x)>0令F(x)=∫(0到x)f(t)dt+∫ 2020-07-31 …
1,函数f(x)=ax^5+bx³+cx+1,若y(2)=2,则f(-2)=?;2.已知f(x)是偶 2020-12-08 …
f(x)是[a,+无穷)上的连续函数,且f(x)可取到正值也可取到负值,x→+无穷时,f(x)→0, 2020-12-31 …