早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求一个积分题目设∑是圆柱面x^2+y^2=4介于z=0,z=3之间部分的外侧,则∫∫x^2dxdy是多少书上的答案是0,我算不出这个答案,还有我想问,题目中说的外侧,包括上,下两个圆型底面吗?有的题目说的是球

题目详情
求一个积分题目
设∑是圆柱面x^2+y^2=4介于z=0,z=3之间部分的外侧,则∫∫x^2dxdy是多少
书上的答案是0,我算不出这个答案,
还有我想问,题目中说的外侧,包括上,下两个圆型底面吗?
有的题目说的是球面的上侧(也有的是说球面的外侧),这些用词是否有区别啊?我想这是不是∑与Dxy的区别啊
希望可以讲得详细点,
▼优质解答
答案和解析
这个题不用笔来算,用嘴来算就行了.
第一步,高斯定理.被积函数在积分域里面是连续的,没有奇点.
于是,原积分=∫∫∫[(x^2)对z求偏导+0对x求偏导+0对y求偏导]dxdydz-多算出来的两个圆形底面的积分.积分区域是圆柱体.
=0-两个多出来的圆形底面的积分.
而两个多出来的圆形底面的积分的绝对值是相等的,都是∫∫x^2dxdy,积分区域就是圆心在原点以2为半径的圆,但是注意,z=3的上底方向是向上的,z=0的下底方向是向下的,于是,抵消掉.
所以,0
此题无论有没有两个底面,都是0.
以上的过程总结成一句话:如果你注意到被积函数作为某矢量场在三个方向上的法投影,而这个矢量场恰恰在你的积分区域里面没有散度,那么一切都好办了.
看了求一个积分题目设∑是圆柱面x^...的网友还看了以下: