早教吧作业答案频道 -->英语-->
ThisbookissoexpensivethatIcan'taffordit.A.buyingB.tobuyC.buyD.tobuying
题目详情
This book is so expensive that I can't afford________it.
A. buying
B. to buy
C. buy
D. to buying
A. buying
B. to buy
C. buy
D. to buying
▼优质解答
答案和解析
答案B
分析:afford(有足够的(钱或时间)做……)经常用在否定句或疑问句中,可以解释为“买不起”,“腾不出时间”.后面接动词不定式作宾语.(延伸)afford+名词,如:I can't afford thisbook.=I can't afford to buy this book.
分析:afford(有足够的(钱或时间)做……)经常用在否定句或疑问句中,可以解释为“买不起”,“腾不出时间”.后面接动词不定式作宾语.(延伸)afford+名词,如:I can't afford thisbook.=I can't afford to buy this book.
看了 Thisbookissoex...的网友还看了以下:
已知定义在R上的f(x)为奇函数,有f(x-4)=-f(x),求周期因为-f(x)=f(-x)所以 2020-04-06 …
∵EM是⊙O的切线,怎么推出EB•EC=EM2①?,看题后回答.(2005•温州)如图,已知四边形 2020-05-21 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
已知函数F(X)在R上可导,其导函数为F(X),若F(X)满足:(x-1)[f'(x)-F(X)] 2020-06-12 …
只有f(-o)=f(0)=-f(0)=0这种情况是:既是偶函数也是奇函数吗?对于像是这种情况f(x 2020-07-30 …
已知映射f:{1,2,3}→{1,2,3},使f[f(x)]=f(x)的函数有多少个?答案是10个 2020-07-30 …
已知集合M={f(x)|f(-x)=f(x),x∈R};N={f(x)|f(-x)=-f(x),x 2020-07-30 …
二次函数f〈X〉满足f{x+1)-f{x)=2x且f(o)=1求(|)f〈X)的解析式(2)当X大于 2020-11-19 …
已知函数满足条件求周期奇函数f(x)满足f(1+x)=f(1-x)求f(x)的周期:f(x)=f(2 2020-11-19 …