早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=lnx-a/x(1)若f(x)在[1,e]上的最小值为3/2,求a的值(2)若f(x)

题目详情
已知函数f(x)=lnx-a/x
(1)若f(x)在[1,e]上的最小值为3/2,求a的值
(2)若f(x)
▼优质解答
答案和解析
f(x)=lnx-a/x 的导函数为:f’(x)=(1/x)+(a/x^2).
1.∵x>0(定义域),
∴①当a≥0时,f’(x)>0,∴f(x)在(0,+∞)上递增;
②当a<0时,f(x)在(0,-a)上递减,在(-a,+∞)上递增.
2.①当a≥0时,∵f(x)在(0,+∞)上递增,∴函数f(x)在[1,e]上的最小值为f(1)=-a.又-a=3/2,∴a=-3/2,与a≥0矛盾.
②当a<0时,由第一问,函数f(x)在[1,e]上的最小值为f(-a)=ln(-a)+1=3/2,解得,a=-√e.