早教吧 育儿知识 作业答案 考试题库 百科 知识分享

什么是函数f(x)的间断点?麻烦请举例说明,

题目详情
什么是函数f(x)的间断点?麻烦请举例说明,
▼优质解答
答案和解析
设一元实函数f(x)在点x0的某去心邻域内有定义.如果函数f(x)有下列情形之一:
(1)在x=x0没有定义;
(2)虽在x=x0有定义,但x→x0 limf(x)不存在;
(3)虽在x=x0有定义,且x→x0 limf(x)存在,但x→x0 limf(x)≠f(x0),
则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点.
 
几种常见类型.
可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义.如函数y=(x^2-1)/(x-1)在点x=1处.
跳跃间断点:函数在该点左极限、右极限存在,但不相等.如函数y=|x|/x在点x=0处.
无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个为∞.如函数y=tanx在点x=π/2处.
振荡间断点:函数在该点可以有无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次.如函数y=sin(1/x)在x=0处.
可去间断点和跳跃间断点称为第一类间断点,也叫有限型间断点.其它间断点称为第二类间断点.
由上述对各种间断点的描述可知,函数f(x)在第一类间断点的左右极限都存在,而函数f(x)在第二类间断点的左右极限至少有一个不存在,这也是第一类间断点和第二类间断点的本质上的区别.