早教吧作业答案频道 -->其他-->
已知函数f(x)=ax3+bx+c在x=2处取得极值为c-16.(Ⅰ)求a、b的值;(Ⅱ)若f(x)有极大值28,求f(x)在[-3,3]上的最大值和最小值.
题目详情
已知函数f(x)=ax3+bx+c在x=2处取得极值为c-16.
(Ⅰ)求a、b的值;
(Ⅱ)若f(x)有极大值28,求f(x)在[-3,3]上的最大值和最小值.
(Ⅰ)求a、b的值;
(Ⅱ)若f(x)有极大值28,求f(x)在[-3,3]上的最大值和最小值.
▼优质解答
答案和解析
(Ⅰ)由题f(x)=ax3+bx+c,可得f′(x)=3ax2+b,又函数在点x=2处取得极值c-16
∴
,
解得a=1,b=-12
(II)由(I)知f(x)=x3-12x+c,f′(x)=3x2-12=3(x+2)(x-2)
令f′(x)=3x2-12=3(x+2)(x-2)=0,解得x1=-2,x2=2
当x∈(-∞,-2)时,f′(x)>0,故f(x)在∈(-∞,-2)上为增函数;当x∈(-2,2)时,f′(x)<0,故f(x)在(-2,2)上为减函数;
当x∈(2,+∞)时,f′(x)>0,故f(x)在(2,+∞)上为增函数;
由此可知f(x)在x1=-2处取得极大值f(-2)=16+c,f(x)在x2=2处取得极小值f(2)=c-16,
由题设条件知16+c=28得,c=12
此时f(-3)=9+c=21,f(3)=-9+c=3,f(2)=-16+c=-4
因此f(x)在[-3,3]上的最小值f(2)=-4,最大值为28.
∴
|
解得a=1,b=-12
(II)由(I)知f(x)=x3-12x+c,f′(x)=3x2-12=3(x+2)(x-2)
令f′(x)=3x2-12=3(x+2)(x-2)=0,解得x1=-2,x2=2
当x∈(-∞,-2)时,f′(x)>0,故f(x)在∈(-∞,-2)上为增函数;当x∈(-2,2)时,f′(x)<0,故f(x)在(-2,2)上为减函数;
当x∈(2,+∞)时,f′(x)>0,故f(x)在(2,+∞)上为增函数;
由此可知f(x)在x1=-2处取得极大值f(-2)=16+c,f(x)在x2=2处取得极小值f(2)=c-16,
由题设条件知16+c=28得,c=12
此时f(-3)=9+c=21,f(3)=-9+c=3,f(2)=-16+c=-4
因此f(x)在[-3,3]上的最小值f(2)=-4,最大值为28.
看了已知函数f(x)=ax3+bx...的网友还看了以下:
会做的来解决看,看看你有多厉害、、、、已知定义域为R的函数f(x)在8到正无穷上是减函数,且函数y 2020-04-26 …
f(x)=1-2/(log2x+1),咋算的设X1=a,X2=b其中a、b均大于2设f(x)=(l 2020-04-27 …
1.函数f(x)=3x²—5x+2,求f(负根号下2),f(-a),f(a+3),f(a)+f(3 2020-05-22 …
已知f(θ)=1-2sinθ,g(θ)=3-4cos2θ.记F(θ)=a•f(θ)+b•g(θ)( 2020-05-23 …
定义在R上的函数y=f(x),满足f(x+2)=-1/f(x),则().A.f(x)不是周期函数B 2020-06-03 …
函数f(x)=sin2x/3+cos(2x/3-π/6),对任意实数α,β,当f(α)-f(β)最 2020-06-27 …
如图,等边△ABC的边长为3,F为BC边上的动点,FD⊥AB于D,FE⊥AC于E,则DE的长为() 2020-07-17 …
函数f(x)=2x^+(x-a)|x-a|,求f(x)最小值f(x)=3(x-a/3)^+2a^/3 2020-11-07 …
(2012•宿迁三模)有机物A和B是正处于临床试验阶段的小分子抗癌药物,结构如下:关于有机物A和B的 2020-12-18 …
在资金时间价值计算时,i和n给定,下列等式中正确的有().A.(F/A,i,n)=[(P/F,i,n 2021-01-14 …