早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•石景山区一模)若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知函

题目详情
(2014•石景山区一模)若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知函数f(x)=x2-1和函数g(x)=2lnx,那么函数f(x)和函数g(x)的隔离直线方程为______.
▼优质解答
答案和解析
作出函数f(x)=x2-1和函数g(x)=2lnx的图象,由图象可知,两个函数的交点坐标为(1,0),要使f(x)≥kx+b和g(x)≤kx+b,则y=kx+b,必须是两个函数在(1,0)处的公共切线,即k+b=0,解得b=-k,函数f′(x)=2x...