早教吧作业答案频道 -->数学-->
设函数f(x)的定义域为(-l,l),证明必存在(-l,l)上的偶函数及奇函数h(x),使得f(x)=g(x)+h(x).书上证明过程:假若g(x)、h(x)存在,使得f(x)=g(x)+h(x),(1),且g(-x)=g(x),h(-x)=-h(x)于是
题目详情
设函数f(x)的定义域为(-l,l),证明必存在(-l,l)上的偶函数及奇函数h(x),使得f(x)=g(x)+h(x). 书上证明过程:假若g(x)、h(x)存在,使得f(x)=g(x)+h(x),(1),
且g(-x)=g(x),h(-x)=-h(x)
于是有f(-x)=g(-x)+h(-x)=g(x)-h(x),(2)
利用(1)、(2)式,可以做出g(x)和h(x),这个启发我们做如下证明:
g(x)=[f(x)+f(-x)]/2
h(x)=[f(x)-f(-x)]/2
则 g(x)+h(x)=f(x),
g(-x)=[f(-x)+f(x)]/2=g(x),
h(-x)=[f(-x)-f(x)]/2=h(x).
证毕.
没看懂这个题,也没看懂过程...
1这个题的条件和结论分别是什么?
2上面证明的过程是什么方法?有人说是反证,貌似也不是啊?
3本来就是让证明在(-l,l)上任意函数都能用一奇函数,一偶函数的和来表示,怎么证得这么不明不白? 谢谢~~
且g(-x)=g(x),h(-x)=-h(x)
于是有f(-x)=g(-x)+h(-x)=g(x)-h(x),(2)
利用(1)、(2)式,可以做出g(x)和h(x),这个启发我们做如下证明:
g(x)=[f(x)+f(-x)]/2
h(x)=[f(x)-f(-x)]/2
则 g(x)+h(x)=f(x),
g(-x)=[f(-x)+f(x)]/2=g(x),
h(-x)=[f(-x)-f(x)]/2=h(x).
证毕.
没看懂这个题,也没看懂过程...
1这个题的条件和结论分别是什么?
2上面证明的过程是什么方法?有人说是反证,貌似也不是啊?
3本来就是让证明在(-l,l)上任意函数都能用一奇函数,一偶函数的和来表示,怎么证得这么不明不白? 谢谢~~
▼优质解答
答案和解析
1、这个题目的意思就是说,对于任意一个区间(-1,1)上的函数,都可以分拆成一个奇函数和一个偶函数的和.
2、本题证明用的方法赋值法,具体求解就是相当于解方程组.
3、由于本题中的函数只用f(x)抽象地来表示,理解上可能有些难度.
2、本题证明用的方法赋值法,具体求解就是相当于解方程组.
3、由于本题中的函数只用f(x)抽象地来表示,理解上可能有些难度.
看了设函数f(x)的定义域为(-l...的网友还看了以下:
有关拉格朗日定理(群论)的问题拉格朗日定理如下:设是群的一个子群,那么R={|a属于G,b属于G, 2020-05-17 …
请问您可以帮我完成《近似代数》中的几道难题吗?设G是个交换群,证明H={g┃g∈G,g4=e}是G 2020-06-10 …
设函数f,g,h∈r的r次方,且有f(x)=x+3,g(x)=2x+1,h(x)=x/2,求f°g 2020-06-12 …
教材上说:“设空间曲线C一般方程为{F(x,y,z)=0,G(x,y,z)=0},消去Z后得H(x 2020-06-12 …
(2014•宝山区二模)设函数g(x)=3x,h(x)=9x.(1)解方程:h(x)-8g(x)- 2020-06-12 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
已知f(x)=x2+mx+1(m∈R),g(x)=ex.(1)当x∈[0,2]时,F(x)=f(x 2020-07-26 …
设函数f,g,h∈R,且有f(x)=x+3,g(x)=2x+1,h(x)=x/2,求出f○g,g○ 2020-07-26 …
设函数g(x)可微,h(x)=e1+g(x),h′(1)=1,g′(1)=2,则g(1)等于()A. 2020-10-31 …
设f(x),g(x),h(x)是R上的任意实数函数,如下定义两个函数和(f·g)(x);对任意x∈R 2020-12-22 …