早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一道大学关于可降价二阶微分方程的题目设任意X>0曲线y=f(X)上点(x,f(X))处得切线在y轴上的截距等于1/x*∫f(t)dt积分范围是0到X,求f(X)

题目详情
一道大学关于可降价二阶微分方程的题目
设任意X>0 曲线 y=f(X)上点(x,f(X))处得切线在y轴上的截距等于1/x*∫f(t)dt 积分范围是0到X,求f(X)
▼优质解答
答案和解析
∵y=f(x)上点(x,f(x))处得切线∴切线方程是Y=f'(x)*X+f(x)-f'(x)*x∴在y轴上的截距是f(x)-f'(x)*x∵在y轴上的截距等于1/x*∫(0,x)f(t)dt ∴得微分方程f(x)-f'(x)*x=1/x*∫(0,x)f(t)dt ==>xf(x)-f'(x)*x²=∫(0,x...