早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数f(x)对任意实数x1、x2都满足f(x1)+f(x2)=2f(x1+x22)(x1−x22),且f(π2)=0,f(x)不恒等于0,求证:(1)f(0)=1;(2)f(x+π)=-f(x);(3)f(x+2π)=f(x)(4)f(x)=f(-

题目详情
设函数f(x)对任意实数x1、x2都满足f(x1)+f(x2)=2f(
x1+x2
2
)(
x1−x2
2
),且f(
π
2
)=0,f(x)不恒等于0,求证:
(1)f(0)=1;(2)f(x+π)=-f(x);(3)f(x+2π)=f(x)
(4)f(x)=f(-x); (5)f(2x)=2f2(x)-1
▼优质解答
答案和解析
证明:由题设f(x)对任意实数x1、x2都满足f(x1)+f(x2)=2f(x1+x22)(x1−x22),且f(π2)=0,f(x)不恒等于0,(1)令x1=x2=0,得f(0)+f(0)=2f(0)×f(0),即2f(0)×[f(0)-1]=0,故f(0)=0或f...