规定Cmx=x(x−1)…(x−m+1)m!,其中x∈R,m是正整数,且C0x=1,这是组合数Cmn(n、m是正整数,且m≤n)的一种推广.(1)求C3-15的值;(2)设x>0,当x为何值时,C3x(C1x)2取得最小值?(3)组合
规定Cmx=,其中x∈R,m是正整数,且C0x=1,这是组合数Cmn(n、m是正整数,且m≤n)的一种推广.
(1)求C3-15的值;
(2)设x>0,当x为何值时,取得最小值?
(3)组合数的两个性质;
①Cmn=Cn-mm. ②Cmn+Cm-1n=Cmn+1.
是否都能推广到Cmx(x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.
变式:规定Axm=x(x-1)…(x-m+1),其中x∈R,m为正整数,且Ax0=1,这是排列数Anm(n,m是正整数,且m≤n)的一种推广.
(1)求A-153的值;
(2)排列数的两个性质:①Anm=nAn-1m-1,②Anm+mAnm-1=An+1m.(其中m,n是正整数)是否都能推广到Axm(x∈R,m是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;
(3)确定函数Ax3的单调区间.
答案和解析
(1)
==−680.
(2)==(x+−3).
∵x>0,x+≥2.
当且仅当x=时,等号成立.
∴当x=时,取得最小值.
(3)性质①不能推广,例如当x=时,有定义,但无意义;
性质②能推广,它的推广形式是Cxm+Cxm-1=Cx+1m,m是正整数.
事实上,当m=1时,有Cx1+Cx0=x+1=Cx+11.
当m≥2时.+=+
=[+1]==.
变式:(Ⅰ)A-153=(-15)(-16)(-17)=-4080;
(Ⅱ)性质①、②均可推广,推广的形式分别是:
①Axm=xAx-1m-1,②Axm+mAxm-1=Ax+1m(x∈R,m∈N+)
事实上,在①中,当m=1时,左边=Ax1=x,右边=xAx-10=x,等式成立;
当m≥2时,左边=x(x-1)(x-2)(x-m+1)
=x[(x-1)(x-2)((x-1)-(m-1)+1)]=xAx-1m-1,
因此,①Axm=xAx-1m-1成立;
在②中,当m=1时,左边=Ax1+Ax0=x+1=Ax+11=右边,等式成立;
当m≥2时,
左边=x(x-1)(x-2)(x-m+1)+mx(x-1)(x-2)(x-m+2)
=x(x-1)(x-2)(x-m+2)[(x-m+1)+m]=(x+1)x(x-1)(x-2)[(x+1)-m+1]=Ax+1m=右边,
因此②Axm+mAxm-1=Ax+1m(x∈R,m∈N+)成立.
(Ⅲ)先求导数,得(Ax3)′=3x2-6x+2.
令3x2-6x+2>0,解得x<或x>.
因此,当x∈(−∞,)时,函数为增函数,
当x∈(,+∞)时,函数也为增函数.
令3x2-6x+2<0,解得<x<.
因此,当x∈(,)时,函数为减函数.
所以,函数Ax3的增区间为(−∞,),(,+∞)
函数Ax3的减区间为(,)
数学问题3到一、若a小m=3,a小n=5,求(1)a小m+n的值,(2)a小3m-2n的值二、已知 2020-04-07 …
设二次函数f(x)=ax2+bx+c(a≠0)在区间[-2,2]上的最大值、最小值分别是M、m,集 2020-05-13 …
如图所示,升降机中的斜面和竖直壁之间放一个质量为10kg的小球a=5 m/s2的加速度加速竖直上升 2020-05-17 …
如图所示,升降机中的斜面和竖直墙壁之间放一个质量为10 kg的光滑小球,斜面倾角θ=30°,当升降 2020-05-17 …
高智商物理题,小心难瞎你的钛合金狗眼一质量为m的小球,沿1/4圆弧木槽顶端自静止下滑,设圆弧形木槽 2020-05-23 …
m、n的最小值分别是多少?(123+2*123+3*123+……+m*123-5)=63n(m、n 2020-07-18 …
特征数集M称M中最大数与最小数之和对于数集M称M中最大数与最小数之和为M的特征记作m(M).求集合 2020-07-29 …
集合A={x|2x-1|>1},集合B={y|y=|logax|,x∈[m,n],a>1},若B= 2020-07-30 …
数学高一集合,求解答集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若B⊆A 2020-08-01 …
数学数形结合求取值范围若方程|x2-5x+4|=m有四个不相等的实根,求m的取值范围.已知a,b都是 2020-11-06 …