早教吧作业答案频道 -->数学-->
如图,已知四边形AEBC,对角线AB,CE为O的直径,以BC为直径的圆与AB交与点D,连接CD,过点O作OF⊥BE于点M,OF交O于点F,连接AF,交CB于点G,交BE于点N,连接EF.若∠BCD=30°.(1)四边形AEBC
题目详情
如图,已知四边形AEBC,对角线AB,CE为 O的直径,以BC为直径的圆与AB交与点D,连接CD,过点O作OF⊥BE于点M,OF交 O于点F,连接AF,交CB于点G,交BE于点N,连接EF.若∠BCD=30°.
(1)四边形AEBC是___形;
(2)求证:△AEG≌△CBD;
(3)△EFN与△ACO是否相似?若相似,请求出相似比;若不相似,请说明理由.
(1)四边形AEBC是___形;
(2)求证:△AEG≌△CBD;
(3)△EFN与△ACO是否相似?若相似,请求出相似比;若不相似,请说明理由.
▼优质解答
答案和解析
(1)∵AB,CE为 O的直径,
∴∠CAE=∠ACB=∠CBE=90°,
∴四边形AEBC是矩形;
(2)如图1,
由(1)知,四边形AEBC是矩形,
∴AE=BC,
∵以BC为直径的圆与AB交与点D,
∴∠BDC=90°,
由∠BCD=90°,可求:∠1=60°,
∴∠2=∠1=60°,
∵OA=OE,
∴△OAE为等边三角形,
∴∠OAE=60°,
∵OF⊥BE,
∴弧EF=弧BF,
∴∠3=∠4=30°,
∴∠3=∠BCD,
在△AEG和CBD中,
,
∴△AEG≌△CBD;
(3)如图2
∵AB,CE为 O的直径,
∴∠CAE=∠ACB=∠CBE=90°,
由(2)知∠2=∠1=60°,
可求:∠7=∠8=30°,
∴∠6=∠7=30°,
由(2)知,弧EF=弧BF,∠4=30°,
∴∠5=∠4=30°,
∴∠5=∠6=∠7=∠8=30°,
∴△EFN∽△ACO;
∴∠3=∠6=30°,
∴EF=AE,
在Rt△AEC中,∠7=30°,
∴
=tan∠7=tan30°=
;
∴两三角形的相似比为:
.
∴∠CAE=∠ACB=∠CBE=90°,
∴四边形AEBC是矩形;
(2)如图1,
由(1)知,四边形AEBC是矩形,
∴AE=BC,
∵以BC为直径的圆与AB交与点D,
∴∠BDC=90°,
由∠BCD=90°,可求:∠1=60°,
∴∠2=∠1=60°,
∵OA=OE,
∴△OAE为等边三角形,
∴∠OAE=60°,
∵OF⊥BE,
∴弧EF=弧BF,
∴∠3=∠4=30°,
∴∠3=∠BCD,
在△AEG和CBD中,
|
∴△AEG≌△CBD;
(3)如图2
∵AB,CE为 O的直径,
∴∠CAE=∠ACB=∠CBE=90°,
由(2)知∠2=∠1=60°,
可求:∠7=∠8=30°,
∴∠6=∠7=30°,
由(2)知,弧EF=弧BF,∠4=30°,
∴∠5=∠4=30°,
∴∠5=∠6=∠7=∠8=30°,
∴△EFN∽△ACO;
∴∠3=∠6=30°,
∴EF=AE,
在Rt△AEC中,∠7=30°,
∴
AE |
AC |
| ||
3 |
∴两三角形的相似比为:
| ||
3 |
看了如图,已知四边形AEBC,对角...的网友还看了以下:
(1)表a为元素周期表短周期的一部分,下列有关A、B、C、D四种元素的叙述正确的是.(填序号,下同 2020-04-08 …
(1)在图中,图形A按:的比例缩小后可以得到图形B.(2)图形A与图形B的面积比是:. 2020-05-02 …
①如图中,图形A按:的比例缩小后可以得到图形B.②图形A与图形B的面积比是:. 2020-05-02 …
如图表示酶催化反应过程的示意图,下列叙述错误的是()A.图中b表示二肽B.图中a与b结合后,a的形 2020-05-14 …
(2)Ca与最活跃的非金属元素A形成化合物D,D的电子式为____________,D的沸点比A与S 2020-05-25 …
A与C同主族元素,在A与B形成的化合物种,A的质量分数为2/5,在A与C形成的化合物中,A的质量分 2020-06-05 …
已知元素A与第七族元素B生成A最高价化合物,在此化合物中B质量分数92.2%.而此氧化物中氧质量分 2020-06-07 …
A,B,C,D,E是原子序数依次增大的五种短周期元素,A是半径最小的元素,C是半径最大的元素.B和 2020-07-22 …
元素A与钠形成的化合物的化学式为NaA,元素B与氯形成的氯化合物的化学式为BCly.则A、B两元素 2020-07-26 …
已知A、B、C、D、E是原子序数依次增大的五种短周期元素,A与C同主族,A与B、A与E形成共价化合物 2020-11-01 …