早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知四边形AEBC,对角线AB,CE为O的直径,以BC为直径的圆与AB交与点D,连接CD,过点O作OF⊥BE于点M,OF交O于点F,连接AF,交CB于点G,交BE于点N,连接EF.若∠BCD=30°.(1)四边形AEBC

题目详情
如图,已知四边形AEBC,对角线AB,CE为 O的直径,以BC为直径的圆与AB交与点D,连接CD,过点O作OF⊥BE于点M,OF交 O于点F,连接AF,交CB于点G,交BE于点N,连接EF.若∠BCD=30°.
作业帮
(1)四边形AEBC是___形;
(2)求证:△AEG≌△CBD;
(3)△EFN与△ACO是否相似?若相似,请求出相似比;若不相似,请说明理由.
▼优质解答
答案和解析
(1)∵AB,CE为 O的直径,
∴∠CAE=∠ACB=∠CBE=90°,
∴四边形AEBC是矩形;
(2)如图1,
作业帮
由(1)知,四边形AEBC是矩形,
∴AE=BC,
∵以BC为直径的圆与AB交与点D,
∴∠BDC=90°,
由∠BCD=90°,可求:∠1=60°,
∴∠2=∠1=60°,
∵OA=OE,
∴△OAE为等边三角形,
∴∠OAE=60°,
∵OF⊥BE,
∴弧EF=弧BF,
∴∠3=∠4=30°,
∴∠3=∠BCD,
在△AEG和CBD中,
∠2=∠1
AE=BC
∠3=∠BCD

∴△AEG≌△CBD;
(3)如图2
∵AB,CE为 O的直径,
∴∠CAE=∠ACB=∠CBE=90°,
由(2)知∠2=∠1=60°,
可求:∠7=∠8=30°,
∴∠6=∠7=30°,
由(2)知,弧EF=弧BF,∠4=30°,
∴∠5=∠4=30°,
∴∠5=∠6=∠7=∠8=30°,
∴△EFN∽△ACO;
∴∠3=∠6=30°,
∴EF=AE,
在Rt△AEC中,∠7=30°,
AE
AC
=tan∠7=tan30°=
3
3

∴两三角形的相似比为:
3
3

作业帮