早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).(1)求G点坐标;

题目详情
如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).

(1)求G点坐标;
(2)求直线EF解析式;
(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.____
▼优质解答
答案和解析
【分析】(1)根据折叠性质可知FG=AF=2,而BF=AB-AF=1,则在Rt△BFG中,利用勾股定理求出BG的长 ,从而得到CG的长,则G点坐标可求.
\n(2)由题意,先求出∠AFE=60°,再由三角函数关系求出AE的长,从而可求出E点坐标;又F点坐标已知,可利用待定系数法求出直线EF的解析式;
\n(3)分FG为平行四边形的一边和对角线两种情况讨论,探究可能的平行四边形的形状.
(1)由已知得,FG=AF=2,FB=AB-AF=1,BC=4.
\n∵四边形ABCD为矩形,
\n∴∠B=90°,
\n∴
\n∴CG=BC-BG=
\n∴G点的坐标为(3,);
\n(2)在Rt△BFG中,
\n∴∠BFG=60°,
\n∴∠AFE=∠EFG=60°.
\n在Rt△AEF中,AE=AFtan∠ AFE=2tan60°=
\n∴OE=AO-AE=
\n∴E点的坐标为(0,.
\n又F点的坐标是(2,4),
\n设直线EF的解析式是y=kx+b,将E、F点的坐标代入,得

\n解得.
\n∴直线EF的解析式为
\n(3)分FG为平行四边形的边和对角线两种情况讨论,探究可能的平行四边形的形状:
\n若以M、N、F、G为顶点的四边形是平行四边形,则可能存在以下情形:
\n①FG为平行四边形的一边,且N点在x轴正半轴上,如图1所示.
\n过点作⊥x轴于点H,易证△≌△GBF,

\n∴,即.
\n由直线EF解析式,求出.
\n∴.
\n②FG为平行四边形的一边,且N点在x轴负半轴上,如图2所示.

\n仿照与①相同的办法,可求得.
\n③FG为平行四边形的对角线,如图3所示.

\n过作FB延长线的垂线,垂足为H.易证△≌△
\n则有=GC=,所以的纵坐标为8-.
\n代入直线EF解析式,得到的横坐标为.
\n∴.
\n综上所述,存在点M,使以M、N、F、G为顶点的四边形是平行四边形,点M的坐标为:.
【点评】(1)求点的坐标,可分别求出该点的横坐标和纵坐标;(2)求直线的函数解析式,可先得出该直线上任意两点的坐标再用待定系数法求解;(3)以四点为顶点的平行四边形可有多种不同的组合,注意分类讨论,不要漏解.
看了如图,四边形ABCD为矩形,C...的网友还看了以下:

2012年,针对部分代销基金产品,中国邮政存储开展了个人网银申购费率()优惠活动。A.三折B.四折C  2020-05-27 …

两块完全相同的平行玻璃砖相互垂直放置.如图一束单色光从左侧水平射入左侧玻璃砖,从右侧射出,则出射光  2020-06-19 …

两块完全相同的平行玻璃砖相互垂直放置.如图一束单色光从左侧水平射入左侧玻璃砖,从右侧射出,则出射光  2020-07-04 …

小明动手操作如下,先剪一个等腰三角形纸片ABC,使AB=AC,再把∠B沿EM折叠,使点B落在点D上  2020-07-09 …

以绳测树长,若将绳二折(对折)测之,则绳余10尺;若将绳四折(对折两次)测之,则绳少2尺,则绳长为  2020-07-10 …

如图,已知点E是矩形ABCD的边AB上一点,BE:EA=5:3,EC=155,把△BEC沿折痕EC  2020-07-18 …

小玲、小明和小强三人相约来到山上采集植物标本,他们在山上发现一个洞,为测量洞有多深,他们找来一根绳子  2020-12-02 …

小玲、小明、和小强三人相遇到山上采集植物标本,他们在山上发现一个洞,为测量该洞有多深,他们找来一条绳  2020-12-02 …

在河岸上用手电斜射平静的河面,进入水中的光()A.速度变小,光路向下弯折B.速度变小,光路向上弯折C  2020-12-15 …

下列的情景在秦朝不可能出现的是[]A.在朝廷中,大臣齐呼“皇帝万岁”B.中央官吏太尉正在向秦始皇上奏  2020-12-25 …