早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,四棱锥P-ABCD的底面ABCD为一直角梯形,侧面PAD是等边三角形,其中BA⊥AD,CD⊥AD,CD=2AD=2AB,平面PAD⊥底面ABCD,E是PC的中点.(1)求证:BE∥平面PAD;(2)求证:BE⊥CD;(3)求BD与平面

题目详情
如图,四棱锥P-ABCD的底面ABCD为一直角梯形,侧面PAD是等边三角形,其中BA⊥AD,CD⊥AD,CD=2AD=2AB,平面PAD⊥底面ABCD,E是PC的中点.
(1)求证:BE∥平面PAD;
(2)求证:BE⊥CD;
(3)求BD与平面PDC所成角的正弦值.
▼优质解答
答案和解析
(1)证明:如图,取CD的中点M,连接EM、BM,则四边形ABMD为矩形
∴EM∥PD,BM∥AD;
又∵BM∩EM=M,
∴平面EBM∥平面APD;
而BE⊂平面EBM,
∴BE∥平面PAD;
(2)证明:取PD的中点F,连接FE,则FE∥DC,BE∥AF,
又∵DC⊥AD,DC⊥PA,
∴DC⊥平面PAD,
∴DC⊥AF,DC⊥PD,
∴EF⊥AF,
在Rt△PAD中,∵AD=AP,F为PD的中点,
∴AF⊥PD,又AF⊥EF且PD∩EF=F,
∴AF⊥平面PDC,又BE∥AF,
∴BE⊥平面PDC,
∴CD⊥BE;
(3)∵CD⊥AF,AF⊥PD,CD∩PD=D,
∴AF⊥平面PCD,
连接DE,则∠BDE为BD与平面PDC所成角.
在直角△BDE中,设AD=AB=a,则BE=AF=
3
2
a,BD=
2
a,∴sin∠BDE=
BE
BD
=
6
4