早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知F1,F2是双曲线x2a2-y2b2=1(a>0,b>0)的焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是()A.4+23B.3+1C.3-1D.3+12

题目详情
已知F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是(  )
A. 4+2
3

B.
3
+1
C.
3
-1
D.
3
+1
2
▼优质解答
答案和解析
已知F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,
则:设|F1F2|=2c
进一步解得:|MF1|=c,|MF2|=
3
c
利用双曲线的定义关系式:|MF2|-|MF1|=2a
两边平方解得:
c2
a2
=(
2
3
−1
)2
c
a
3
+1
故选:B