早教吧作业答案频道 -->数学-->
不等式题目:在△ABC中请证明sinA+sinB+sinC≤cos(A/2)+cos(B/2)+cos(C/2)如题所示sinA+sinB+sinC≤cos(A/2)+cos(B/2)+cos(C/2),请证明这个式子,还有一个类似的cosA+cosB+cosC≤sin(A/2)+sin(B/2)+sin(C/2)也请专家证明
题目详情
不等式题目:在△ABC中请证明sinA+sinB+sinC≤cos(A/2)+cos(B/2)+cos(C/2)
如题所示sinA+sinB+sinC≤cos(A/2)+cos(B/2)+cos(C/2),请证明这个式子,
还有一个类似的cosA+cosB+cosC≤sin(A/2)+sin(B/2)+sin(C/2)也请专家证明
如题所示sinA+sinB+sinC≤cos(A/2)+cos(B/2)+cos(C/2),请证明这个式子,
还有一个类似的cosA+cosB+cosC≤sin(A/2)+sin(B/2)+sin(C/2)也请专家证明
▼优质解答
答案和解析
sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]≤2sin[(A+B)/2]=2cosC/2
同理,sinB+sinC≤2cosA/2,sinC+sinA≤2cosB/2
三式相加,得2(sinA+sinB+sinC)≤2[cos(A/2)+cos(B/2)+cos(C/2)],从而得到想要的不等式
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]≤2cos[(A+B)/2]=2sinC/2
同理,cosB+cosC≤2sinA/2,cosC+cosA≤2sinB/2
三式相加,得2(cosA+cosB+cosC)≤2[sin(A/2)+sin(B/2)+sin(C/2)],从而得到想要的不等式
且都容易看到取等号当且仅当ABC为等边三角形
同理,sinB+sinC≤2cosA/2,sinC+sinA≤2cosB/2
三式相加,得2(sinA+sinB+sinC)≤2[cos(A/2)+cos(B/2)+cos(C/2)],从而得到想要的不等式
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]≤2cos[(A+B)/2]=2sinC/2
同理,cosB+cosC≤2sinA/2,cosC+cosA≤2sinB/2
三式相加,得2(cosA+cosB+cosC)≤2[sin(A/2)+sin(B/2)+sin(C/2)],从而得到想要的不等式
且都容易看到取等号当且仅当ABC为等边三角形
看了不等式题目:在△ABC中请证明...的网友还看了以下:
已知数列{an}的通项公式为an=2^(n-1)+1则a1Cn^0+a2Cn^1+a3Cn^2+. 2020-07-09 …
A、戕害(qiānɡ)惩罚(chěnɡ)宿怨(sù)望帝啼鹃(tí)B、阿谀(ē)参差(cēn)弥 2020-07-14 …
∑[k=0,∞]C(k,N)C(n-k,M-N)=C(n,M)∑[k=0,n](1-p)^k=1/ 2020-07-16 …
组合数题目求解下面这个式子:C(n-1,2)+2×C(n-2,2)+3×C(n-3,2)+……+( 2020-07-22 …
什么是二项式的通式?在二项式定理(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+ 2020-07-31 …
一道二项式的题目设n是满足C(n,0)+C(n,1)+2C(n,2)+……+nC(n,n)C(n, 2020-07-31 …
证明组合性质:C(n+1,m)=C(n,m)+C(n,m-1)C(n+1,m)=(n+1)!/m!( 2020-11-01 …
下列词语加点字的注音全部正确的一组是A.忏悔(chàn)宿怨(sù)参差(cēn)咄咄逼人(duó) 2020-11-14 …
A.诞生dàn刹那shà撕碎sī缺陷xiànB.凝聚níng依赖lài典型xíng履行lǚC.求援y 2020-11-14 …
X∪Y=〈1,2,…,n〉求集合方程有序解的个数:X∪Y=〈1,2,…,n〉在此鞠躬致谢.我算出来是 2021-01-13 …