早教吧作业答案频道 -->物理-->
求x/In(x)的两个极限如何用代数方法证明x/In(x)的两个极限(x趋近正负无穷时)刚开始学,希望说的详细些,
题目详情
求x/In(x)的两个极限
如何用代数方法证明x/In(x)的两个极限(x趋近正负无穷时)
刚开始学,希望说的详细些,
如何用代数方法证明x/In(x)的两个极限(x趋近正负无穷时)
刚开始学,希望说的详细些,
▼优质解答
答案和解析
用罗比塔法则
limx/In(x)=lim1/(1/x)=x
x->无穷
罗比塔法则:
求解未定型极限的一种非常有效的方法
对于“0/0”型的内容是:
若f(x) 与g(x) 满足:
(1) limf(x)=0 ,limg(x)=0 ;
(2) 在点X0 的某去心邻域内,f'(x) 与g'(x) 均存在,且 g'(x)不等于0;
(3)limf(x)/g(x)存在或为无穷
则有
limf(x)/g(x)=limf'(x)/g'(x)
其中x趋近于X0
limx/In(x)=lim1/(1/x)=x
x->无穷
罗比塔法则:
求解未定型极限的一种非常有效的方法
对于“0/0”型的内容是:
若f(x) 与g(x) 满足:
(1) limf(x)=0 ,limg(x)=0 ;
(2) 在点X0 的某去心邻域内,f'(x) 与g'(x) 均存在,且 g'(x)不等于0;
(3)limf(x)/g(x)存在或为无穷
则有
limf(x)/g(x)=limf'(x)/g'(x)
其中x趋近于X0
看了 求x/In(x)的两个极限如...的网友还看了以下:
全集U=R,集合M={x|(x+4)(1-2x)>0},N={x|x2>=16,x属于R-}则集合 2020-04-05 …
请求翻译乱码请高手翻译下什么意思啊?亅酰谎u知欋5??k(so?笿?(n?豃]?n#?k(so? 2020-04-06 …
已知函数f(x)=0(x≤0)n[x−(n−1)]+f(n−1)(n−1<x≤n,n∈N*)数列{ 2020-04-09 …
设f(x)在x处有n阶导数,且f'(x0)=f''(x0)=…=f^(n-1)(x0)=0,f^( 2020-05-17 …
若M={x|n=x/2,n∈Z},N={x|n=x+1/2,n∈Z},则M∩N等于A.空集B.{空 2020-05-20 …
A={X∈N|5-X分之6}与A={5-X分之6|X∈N}有什么区别sorry.打错了.A={X∈ 2020-05-20 …
1.对每个正整数n,用S(n)表示n的各位数字之和,那么有()个n使得n+S(n)+S(S(n)) 2020-05-21 …
为什么ln(1+x)=x-1/2x²+o(x²)不应该是ln(1+x)=x-x^2/2+x^3/3 2020-05-21 …
当x趋近于无穷大时,求下列函数极限★(sinx+cosx)/x★(2^n+1+3^n+1当x趋近于 2020-06-02 …
对于集合M、N,定义M-N={x|x∈M,且x∉N},M⊕N=(M-N)∪(N-M).设A={y| 2020-06-07 …