早教吧作业答案频道 -->物理-->
求x/In(x)的两个极限如何用代数方法证明x/In(x)的两个极限(x趋近正负无穷时)刚开始学,希望说的详细些,
题目详情
求x/In(x)的两个极限
如何用代数方法证明x/In(x)的两个极限(x趋近正负无穷时)
刚开始学,希望说的详细些,
如何用代数方法证明x/In(x)的两个极限(x趋近正负无穷时)
刚开始学,希望说的详细些,
▼优质解答
答案和解析
用罗比塔法则
limx/In(x)=lim1/(1/x)=x
x->无穷
罗比塔法则:
求解未定型极限的一种非常有效的方法
对于“0/0”型的内容是:
若f(x) 与g(x) 满足:
(1) limf(x)=0 ,limg(x)=0 ;
(2) 在点X0 的某去心邻域内,f'(x) 与g'(x) 均存在,且 g'(x)不等于0;
(3)limf(x)/g(x)存在或为无穷
则有
limf(x)/g(x)=limf'(x)/g'(x)
其中x趋近于X0
limx/In(x)=lim1/(1/x)=x
x->无穷
罗比塔法则:
求解未定型极限的一种非常有效的方法
对于“0/0”型的内容是:
若f(x) 与g(x) 满足:
(1) limf(x)=0 ,limg(x)=0 ;
(2) 在点X0 的某去心邻域内,f'(x) 与g'(x) 均存在,且 g'(x)不等于0;
(3)limf(x)/g(x)存在或为无穷
则有
limf(x)/g(x)=limf'(x)/g'(x)
其中x趋近于X0
看了 求x/In(x)的两个极限如...的网友还看了以下:
一个反函数的问题.若函数y=f-1(x)是奇函数f(x)=(3^x-a)/(3^x+1)的反函数, 2020-04-26 …
1.下列分式方程中,有解的是().A.x/x^2-1=1/x-1B.x/x^2-1=1/x+1C. 2020-05-01 …
设lim(x->X)f(x)=∞,且x->X时,g(x)的主部是f(x)证明lim(x->X)g( 2020-05-12 …
设f(X),g(x)都在[a,b]上连续,且在(a,b)内可微,又对于(a,b)内的x有g'(x) 2020-05-14 …
limx→0(x+e^x)^2/x的具体解法.我的错,题目应该是limx→0(x+e^x)^(2/ 2020-05-15 …
设f(x)在x=0处连续,当x趋向0时f(x)/x的极限等于1,则f(0)+ f’(0)的值希望各 2020-05-16 …
f(1/x)=x/1-x,则当x不等于0时且不等于1时,f(x)=?希望有解题原理,谢谢! 2020-05-17 …
双曲函数证明有没有方法可以只用e^x=cosh(x)+sinh(x)证明cosh(2x)=cosh 2020-06-02 …
解关于x的方程(x+b)/a=(x+a)/b(a不等于b),得x=希望在十分钟内看到答案,最好带有 2020-06-03 …
分解因式遇到一道分解因式的题目xy-1+x-y希望大家多多指教=y(x-1)+(x-1)=(y+1 2020-06-08 …