早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若直角坐标平面内的两个不同点M、N满足条件:①M、N都在函数y=f(x)的图象上;②M、N关于原点对称.则称点对[M,N]为函数y=f(x)的一对“友好点对”.(注:点对[M,N]与[N,M]为

题目详情
若直角坐标平面内的两个不同点M、N满足条件:
①M、N都在函数y=f(x)的图象上; 
②M、N关于原点对称.则称点对[M,N]为函数y=f(x)的一对“友好点对”.(注:点对[M,N]与[N,M]为同一“友好点对”),已知函数数学公式 ,此函数的“友好点对”有________.
▼优质解答
答案和解析
2个

分析:
根据题意:“友好点对”,可知,欲求f(x)的“友好点对”,只须作出函数y=-x 2 -4x(x≤0)的图象关于原点对称的图象,看它与函数f(x)=log 3 x(x>0)交点个数即可.


根据题意:当x>0时,-x<0,
则f(-x)=-(-x) 2 -4(-x)=-x 2 +4x,
则函数y=-x 2 -4x(x≤0)的图象关于原点对称的函数是y=x 2 -4x(x≥0)
由题意知,作出函数y=x 2 -4x(x≥0)的图象及函数f(x)=log 3 x(x>0)的图象如下图所示
由图可得两个函数图象共有两个交点

即f(x)的“友好点对”有:2个.
故答案为:2

点评:
本题主要考查了奇偶函数图象的对称性,以及数形结合的思想,解答的关键在于对“友好点对”的正确理解,合理地利用图象法解决.