早教吧作业答案频道 -->数学-->
设x+1/x=-1,求下列各式的值:(1)x^3n+1/(x^3n);(2)x^(3n±1)+1/[x^(3n±1)];(3)当x变化时,求分式(3x^2+6x+5)/[(1/2)x^2+x+1]的最小值.
题目详情
设x+1/x=-1,求下列各式的值:
(1)x^3n+1/(x^3n);
(2)x^(3n±1)+1/[x^(3n±1)];
(3)当x变化时,求分式(3x^2+6x+5)/[(1/2)x^2+x+1]的最小值.
(1)x^3n+1/(x^3n);
(2)x^(3n±1)+1/[x^(3n±1)];
(3)当x变化时,求分式(3x^2+6x+5)/[(1/2)x^2+x+1]的最小值.
▼优质解答
答案和解析
由x+1/x=-1
x^2+x+1=0
(x-1)(x^2+x+1)=0
得x^3-1=0
x^3=1,x1=-1/2+i根号3/2或x2 =-1/2-i根号3/2
(1)x^3n+1/(x^3n)=2
(2)x^(3n±1)+1/[x^(3n±1)]=x^(±1)+1/[x^(±1)]
x^(1)+1/[x^(1)]=1,x^(-1)+1/[x^(-1)]=x+1/x=1
(3)本问应当与前面 题目条件无关否则是复数谈不上最大最小.
y=(3x^2+6x+5)/[(1/2)x^2+x+1]
6x^2+12x+10=yx^2+2yx+2y
(6-y)x^2+(12-2y)x+10-2y=0
判别式=(12-2y)^2-8(6-y)(5-y)=144-48y+4y^2-240+88y-8y^2=-4y^2+40y-96>=0
y^2-10y+24
x^2+x+1=0
(x-1)(x^2+x+1)=0
得x^3-1=0
x^3=1,x1=-1/2+i根号3/2或x2 =-1/2-i根号3/2
(1)x^3n+1/(x^3n)=2
(2)x^(3n±1)+1/[x^(3n±1)]=x^(±1)+1/[x^(±1)]
x^(1)+1/[x^(1)]=1,x^(-1)+1/[x^(-1)]=x+1/x=1
(3)本问应当与前面 题目条件无关否则是复数谈不上最大最小.
y=(3x^2+6x+5)/[(1/2)x^2+x+1]
6x^2+12x+10=yx^2+2yx+2y
(6-y)x^2+(12-2y)x+10-2y=0
判别式=(12-2y)^2-8(6-y)(5-y)=144-48y+4y^2-240+88y-8y^2=-4y^2+40y-96>=0
y^2-10y+24
看了设x+1/x=-1,求下列各式...的网友还看了以下:
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
设a0为常数,且an=3n-1-2an-1(n∈N*).证明:n≥1时,an=15[3n+(-1) 2020-05-17 …
对于任意的正整数,所有形如(n³+3n²+2n)的数的最大公约数是什么?∵n³+3n²+2n=n( 2020-05-17 …
设a0为常数,且an=3n-1-2an-1(n∈N*).证明:n≥1时,an=15[3n+(-1) 2020-06-04 …
设a0为常数,且an=3n-1-2an-1(n∈N*).证明:n≥1时,an=15[3n+(-1) 2020-07-09 …
数列的极限计算:lim[(7n+4)/(5-3n)]=n→∞lim[(2n^2+n-3)/(3n^ 2020-07-22 …
an=1/(3n-2)(3n+1),求Sn不要给我直接来个根据裂项法怎么裂的项也就是怎么变成an= 2020-07-22 …
数列{An}的前n项和为Sn,A1=1An-1=2Sn(n∈N*)求数列{An}的通项公式An;A 2020-07-30 …
阅读材料:已知分式3n+8n+1,化简后结果是整数,符合一切整数的n有哪些?∵3n+8n+1=3n+ 2020-11-07 …
证明:大于3的两个孪生素数所夹的那个自然数能被6整除求大神帮助答案的前部分:如果p是大于3的整数,则 2020-11-22 …