早教吧作业答案频道 -->其他-->
己知:正方形ABCD.(1)如图①,点E、点F分别在边AB和AD上,且AE=AF.此时,线段BE、DF的数量关系和位置关系分别是什么?请直接写出结论.(2)如图②,等腰直角三角形FAE绕直角顶点A顺时
题目详情
己知:正方形ABCD.
(1)如图①,点E、点F分别在边AB和AD上,且AE=AF.此时,线段BE、DF的数量关系和位置关系分别是什么?请直接写出结论.
(2)如图②,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当0°<α<90°时,连接BE、DF,此时(1)中的结论是否成立,如果成立,请证明;如果不成立,请说明理由.
(3)如图③,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当90°<α<180°时,连接BD、DE、EF、FB,得到四边形BDEF,则顺次连接四边形BDEF各边中点所组成的四边形是什么特殊四边形?请直接写出结论.
(1)如图①,点E、点F分别在边AB和AD上,且AE=AF.此时,线段BE、DF的数量关系和位置关系分别是什么?请直接写出结论.
(2)如图②,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当0°<α<90°时,连接BE、DF,此时(1)中的结论是否成立,如果成立,请证明;如果不成立,请说明理由.
(3)如图③,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当90°<α<180°时,连接BD、DE、EF、FB,得到四边形BDEF,则顺次连接四边形BDEF各边中点所组成的四边形是什么特殊四边形?请直接写出结论.
▼优质解答
答案和解析
(1)在正方形ABCD中,AB=AD,∠A=90°,
∵AE=AF,
∴AB-AE=AD-AF,
即BE=DF,
∵∠A=90°,
∴BE⊥DF,
故BE=DF,BE⊥DF;
(2)∵△FAE是等腰直角三角形,
∴AE=AF,
在正方形ABCD中,AB=AD,
又∵∠BAE=∠DAF=α,
∴在△ABE和△ADF中,
,
∴△ABE≌△ADF(SAS),
∴BE=DF,∠ABE=∠ADF,
延长DF交BE于O,
∵∠ADF+∠1=90°,∠1=∠2(对顶角相等),
∴∠ABE+∠2=90°,
∴∠BOD=180°-90°=90°,
∴BE⊥DF,
故BE=DF,BE⊥DF;
(3)连接BE、DF,
与(2)同理求出BE=DF,BE⊥DF,
故顺次连接四边形BDEF各边中点所组成的四边形是正方形.
∵AE=AF,
∴AB-AE=AD-AF,
即BE=DF,
∵∠A=90°,
∴BE⊥DF,
故BE=DF,BE⊥DF;
(2)∵△FAE是等腰直角三角形,
∴AE=AF,
在正方形ABCD中,AB=AD,
又∵∠BAE=∠DAF=α,
∴在△ABE和△ADF中,
|
∴△ABE≌△ADF(SAS),
∴BE=DF,∠ABE=∠ADF,
延长DF交BE于O,
∵∠ADF+∠1=90°,∠1=∠2(对顶角相等),
∴∠ABE+∠2=90°,
∴∠BOD=180°-90°=90°,
∴BE⊥DF,
故BE=DF,BE⊥DF;
(3)连接BE、DF,
与(2)同理求出BE=DF,BE⊥DF,
故顺次连接四边形BDEF各边中点所组成的四边形是正方形.
看了己知:正方形ABCD.(1)如...的网友还看了以下:
已知函数f(x)满足(1/2)^f(x)=x+1,f^(-1)(x)是f(x)的反函数,则函数y=f 2020-03-31 …
已知函数f(x)=x2/1+x2(1)求f(2)+f(1/2),f(3)+f(1/3)的值(2)求 2020-05-12 …
f(x)的定义域为R+,对任意x,y∈R+恒有f(xy)=f(x)+f(y)设f^-1(x)是f( 2020-06-05 …
设函数f(x)=1/(4^x+2)⑴证明:对一切x∈R,f(x)+f(1-x)是常数;⑵an=f( 2020-06-12 …
数学真烦人==设f(x)=π/2+Arctanx,则f(x)的反函数的π/3是多少?f(x)的反函 2020-06-30 …
f(x)与f(1-x)的关系是什么呢?我的意思是f(x)与f(x-1)的关系是前者向右平移得到的, 2020-07-15 …
设A,B是非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数,在集合B中都有唯一确 2020-07-30 …
函数f(x)的倒数1/f(x)表示成-1次方怎么写,书上f(x)的2次方是f^2(x),但是f^- 2020-08-01 …
函数f(x)的倒数1/f(x)表示成-1次方怎么写,书上f(x)的2次方是f^2(x),但是f^- 2020-08-01 …
已知f'(x)=2,则lim(△x→+∞),[f(1+2△x)-f(1)]/△x=?,是的,题目有错 2020-11-01 …