早教吧 育儿知识 作业答案 考试题库 百科 知识分享

己知:正方形ABCD.(1)如图①,点E、点F分别在边AB和AD上,且AE=AF.此时,线段BE、DF的数量关系和位置关系分别是什么?请直接写出结论.(2)如图②,等腰直角三角形FAE绕直角顶点A顺时

题目详情
己知:正方形ABCD.
(1)如图①,点E、点F分别在边AB和AD上,且AE=AF.此时,线段BE、DF的数量关系和位置关系分别是什么?请直接写出结论.
(2)如图②,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当0°<α<90°时,连接BE、DF,此时(1)中的结论是否成立,如果成立,请证明;如果不成立,请说明理由.
(3)如图③,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当90°<α<180°时,连接BD、DE、EF、FB,得到四边形BDEF,则顺次连接四边形BDEF各边中点所组成的四边形是什么特殊四边形?请直接写出结论.
▼优质解答
答案和解析
(1)在正方形ABCD中,AB=AD,∠A=90°,
∵AE=AF,
∴AB-AE=AD-AF,
即BE=DF,
∵∠A=90°,
∴BE⊥DF,
故BE=DF,BE⊥DF;

(2)∵△FAE是等腰直角三角形,
∴AE=AF,
在正方形ABCD中,AB=AD,
又∵∠BAE=∠DAF=α,
∴在△ABE和△ADF中,
AB=AD
∠BAE=∠DAF
AE=AF

∴△ABE≌△ADF(SAS),
∴BE=DF,∠ABE=∠ADF,
延长DF交BE于O,
∵∠ADF+∠1=90°,∠1=∠2(对顶角相等),
∴∠ABE+∠2=90°,
∴∠BOD=180°-90°=90°,
∴BE⊥DF,
故BE=DF,BE⊥DF;

(3)连接BE、DF,
与(2)同理求出BE=DF,BE⊥DF,
故顺次连接四边形BDEF各边中点所组成的四边形是正方形.