早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在△ABC中,AD为∠BAC的平分线,点E在BC的延长线上,且∠EAC=∠B,以DE为直径的半圆交AD于点F,交AE于点M.(1)判断AF与DF的数量关系,并说明理由.(2)只用无刻度的直尺画出△ADE的

题目详情
如图,在△ABC中,AD为∠BAC的平分线,点E在BC的延长线上,且∠EAC=∠B,以DE为直径的半圆交AD于点F,交AE于点M.
作业帮
(1)判断AF与DF的数量关系,并说明理由.
(2)只用无刻度的直尺画出△ADE的边DE上的高AH(不要求写作法,保留作图痕迹).
(3)若EF=8,DF=6,求DH的长.
▼优质解答
答案和解析
(1)AF=DF,
理由如下:
∵AD平分∠BAC,
∴∠BAD=∠CAD.
又∵∠B=∠CAE,
∴∠BAD+∠B=∠CAD+∠CAE.
即∠ADE=∠DAE,
∴AE=DE,
∵DE是直径,
∴EF⊥AD,
∴AF=DF;

作业帮(2)如图:连接DM,DM交EF于G,作射线AG交DE于H,此时AH是高.

(3)在△EFD中,EF=8,DF=6,由勾股定理得,DE=AE=10,
∵AH是DE边上的高,
∴∠AHD=90°,
∵∠EFD=90°,
∴∠AHD=∠EFD,
∵∠ADH=∠EDF,
∴△ADH∽△EDF,
DH
DF
=
AD
DE

DH
6
=
12
10

解得DH=
36
5