早教吧 育儿知识 作业答案 考试题库 百科 知识分享

证明:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.(画出图形,写出已知、求证、并证明)已知:如图,直线AB、CD被EF截于M、N两点,AB∥CD,MG平分∠BMN,NG平分∠DNM.

题目详情
证明:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.(画出图形,写出已知、求证、并证明)
已知:如图,直线AB、CD被EF截于M、N两点,AB∥CD,
MG平分∠BMN,NG平分∠DNM.
求证:MG⊥NG
证明:∵AB∥CD(已知)
∴∠BMN+∠DNM=180°(______)
∵MG平分∠BMN,NG平分∠DNM (已知)
∴∠GMN=
1
2
∠BMN,∠GNM=
1
2
∠DNM(______)
∴∠GMN+∠GNM=
1
2
(∠BMN+∠DNM)=
1
2
×180°=90°(等式性质)
又在△GMN中,有∠GMN+∠GNM+∠G=180°(______)
∴∠G=180°-(∠GMN+∠GNM)=180°-90°=90°(等式性质)
∴MG⊥NG(______)
▼优质解答
答案和解析
根据证明的步骤可依次填写:
两直线平行,同旁内角互补;
角平分线的性质;
三角形内角和定理;
垂直的性质.