早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若不等式(x^2-8x+20除以mx^2+2(m+1)x+9m+4)大于0对任意的实数x恒成立,求实数m的取值范围

题目详情
若不等式(x^2-8x+20除以mx^2+2(m+1)x+9m+4)大于0对任意的实数x恒成立,求实数m的取值范围
▼优质解答
答案和解析
x^2-8x+20=(x-4)^2+4》0
x^2-8x+20 / mx^2+2(m+1)x+9m+4>0对一切实数x恒成立
只要mx^2+2(m+1)x+9m+4>0对x∈R成立即可
当m=0是,显然对x属于R不成立
当m≠0,开口向上,只要和x轴没有交点即可,开口向下的话,也和x轴没有交点
则△=4(m+1)^2-4m(9m+4)
=4m^2+8m+4-36m^2-16m
=-32m^2-8m+40
8(m^2+1/4 m+1/64)>9/8
(m+1/8)^2>9/64
m+1/8>3/8或者m+1/81/4或者m