早教吧作业答案频道 -->数学-->
如图,AB是半圆O的直径,C、D、E三点在半圆上,H、K是直径AB上的点,若∠AHC=∠DHB,∠DKA=∠EKB,已知弧AC为30°,弧BE为70°,则∠HDK=()A.30°B.40°C.70°D.80°
题目详情
如图,AB是半圆O的直径,C、D、E三点在半圆上,H、K是直径AB上的点,若∠AHC=∠DHB,∠DKA=∠EKB,已知弧AC为30°,弧BE为70°,则∠HDK=( )
A. 30°
B. 40°
C. 70°
D. 80°
A. 30°
B. 40°
C. 70°
D. 80°
▼优质解答
答案和解析
将半圆O补全,得圆O.过点D作DF⊥AB于P,交⊙O于F,连接HF、FK.
∵DF⊥AB于P,AB是圆O的直径,
∴DP=FP,
∴AB是DF的垂直平分线,
∴HD=HF,KD=KF,
∴∠HDF=∠HFD,∠KDF=∠KFD.
∵HD=HF,DP=FP,
∴∠FHB=∠DHB,
∵∠AHC=∠DHB,
∴∠FHB=∠AHC,
∴∠AHC+∠AHF=∠FHB+∠AHF=180°,
∴C、H、F三点共线.
同理,E、K、F三点共线.
∴∠HDK=∠HDF+∠KDF=∠HFD+∠KFD=∠CFE,
又∵弧AC为30°,弧BE为70°,
∴弧CE为180°-30°-70°=80°,
∴∠CFE=
×80°=40°,
∴∠HDK=40°.
故选B.
∵DF⊥AB于P,AB是圆O的直径,
∴DP=FP,
∴AB是DF的垂直平分线,
∴HD=HF,KD=KF,
∴∠HDF=∠HFD,∠KDF=∠KFD.
∵HD=HF,DP=FP,
∴∠FHB=∠DHB,
∵∠AHC=∠DHB,
∴∠FHB=∠AHC,
∴∠AHC+∠AHF=∠FHB+∠AHF=180°,
∴C、H、F三点共线.
同理,E、K、F三点共线.
∴∠HDK=∠HDF+∠KDF=∠HFD+∠KFD=∠CFE,
又∵弧AC为30°,弧BE为70°,
∴弧CE为180°-30°-70°=80°,
∴∠CFE=
1 |
2 |
∴∠HDK=40°.
故选B.
看了如图,AB是半圆O的直径,C、...的网友还看了以下:
问几道电路作业5、F=A+BD+CDE+D=()(A)A(B)A+D(C)D(D)A+BD逻辑函数 2020-05-24 …
关于一元三次方程的根,高分请踊跃回答!我已经化简了;x1=1/6/a*z-2/y/a/z-1/3* 2020-07-09 …
如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD的内表面光滑,内圆A′B′C′D 2020-07-11 …
如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD光滑,内圆的上半部分B′C′D′ 2020-07-16 …
求证:(1)b=d,f=b^2;(2)求a,b,c,d,e,f,g的值(题目如下)设a、b、c、d 2020-07-27 …
数学等比性质等比性质:如果a/b=a/d=e/f=.=m/n,那么(a+c+e+...+m)/(b 2020-07-28 …
点A、B、C、D在数轴上的位置如图1所示,已知AB=3,BC=2,CD=4.(1)若点C为原点,则 2020-07-29 …
(14分)如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD光滑,内圆A′B′C′ 2020-08-01 …
如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD的内侧光滑,内圆A′B′C′D′ 2020-08-01 …
已知a、b的阳离子和c、d的阴离子电子层结构相同,且原子半径a>b,阴离子所带电荷数c>d,则它们的 2020-11-26 …